Introduction to the surface integral | Multivariable Calculus | Khan Academy

  Рет қаралды 460,139

Khan Academy

Khan Academy

Күн бұрын

Пікірлер: 134
@broudwauy
@broudwauy 7 жыл бұрын
Awesome explanation. Remembering that the cross product was the area of the parallelogram defined by the two vectors was an absolute revelation. I had absolutely no idea why the fundamental vector product showed up in surface integrals.
@raydencreed1524
@raydencreed1524 6 жыл бұрын
Inconspicuous Bear Wrestler If you want something “fundamental”, then the cross product is not a good choice. It’s defined only in three dimensions. The wedge product, on the other hand, is a much more natural form of the cross product and can generalize to any number of dimensions you want!
@whoisbobby3
@whoisbobby3 8 жыл бұрын
Khan, you are literally the reason I went from cal 1- to linear and diff. You are the best!
@DiomedesStrosMkai
@DiomedesStrosMkai 11 жыл бұрын
That's why Khan is awesome.. A lot of the time my frustration comes when the book just skips a step and leaves me thinking '"what the hell?". Usually it's explained somewhere, but it's always off the cuff or several chapters back. This way it's *thoroughly* explained.. I'm not missing *anything*. Every piece of the puzzle is shown
@1Man2Go
@1Man2Go 12 жыл бұрын
dude..i do not know how much you're getting paid for this.. but it's not enough.. how you explained this is outright brilliant. something my teachers always fall short of.
@malefetsanekoalane4549
@malefetsanekoalane4549 2 жыл бұрын
I have finally figured out what makes your explanations so great. You answer questions before they are asked. You replace computational ability with deep understanding,which is education for life. May you be spared for other generations.
@DavideSLiuni
@DavideSLiuni 4 жыл бұрын
This man is the only reason of why I'm passing calculus in university
@rheejoan
@rheejoan 13 жыл бұрын
"now lets go do this for t!!!...i am running out of colors..." Love this man
@gianlucacastro5281
@gianlucacastro5281 4 жыл бұрын
That was the only thorough explanation I could find as to way the surface integral takes this cross product the way it does, thank you!!
@HotPepperLala
@HotPepperLala 14 жыл бұрын
God seriously needs to create more people like you
@vukstojiljkovic7181
@vukstojiljkovic7181 4 жыл бұрын
Thank you for this. They never did something like this, they just introduced it and started calculating.....
@wontpower
@wontpower 7 жыл бұрын
The cross product in the integral reminds me of the Jacobian. The area of dsdt doesn't quite match up with the surface area of the differential surface area in x y and z, so you need to multiply by abs(dr/ds x dr/dt) in order to account for that difference.
@vaggs75
@vaggs75 4 жыл бұрын
Okay short explaination. If we take the double integral of a function that is dependent on three variables, then we get the volume of a shape. This shape is a 3d shape. the bottom of the shape is the projection of the surface onto the zy plane, just like if we had a torch and lit it from exactly above. the top of the shape are the "hills that are formed" from the values of the fucntions. Now what the surface integral calculates is the bottom of the same shape, but with a twist. the top stays the same but the bottom becomes the projection onto another surface that is not the zy plane but rather maybe a diagonal surface or something of that sort.
@hakuchaku27
@hakuchaku27 10 жыл бұрын
this must be longest video of khan academy
@oyster4545
@oyster4545 Жыл бұрын
🥰🥰🥰Sal you deserve noble prize ❤❤
@legendarysannin65
@legendarysannin65 13 жыл бұрын
Please connect your videos with a link on the screen so we can jump from the video before. Very good explanation!
@sandracordoba6090
@sandracordoba6090 Жыл бұрын
You are indeed a brilliant person when it comes to explain this concepts. All my respect
@FlippyBrown
@FlippyBrown 6 жыл бұрын
Sir, am I right to say that every single point on the region is associated to a parallelogram. And we are adding all the parallelograms(its area) associated to every single point on the region, in order to find the surface area?
@raydencreed1524
@raydencreed1524 6 жыл бұрын
Nicholas That sounds right to me :)
@fernandolk4536
@fernandolk4536 Ай бұрын
This can be used to explain the animal transmutation and the underlying rationale of why the Nazi killed specifically.
@pedrogaleano6722
@pedrogaleano6722 4 жыл бұрын
Man how come 39 people not like this video? Thank you very much Sal!
@oneinabillion654
@oneinabillion654 4 жыл бұрын
Sal, I remember in linear algebra u said that. U will be remembered.
@mchegrmchegr290
@mchegrmchegr290 27 күн бұрын
Very informative. Simply excellent.
@TennisGvy
@TennisGvy 13 жыл бұрын
@Liaomiao That's if you are integrating a function in two directions. Integrating a function adds another dimension so to speak.
@gotnerdy
@gotnerdy 12 жыл бұрын
Thanks for this and also making the video downloadable. Also what software/hardware are you using for this?
@jitulborah_10
@jitulborah_10 2 жыл бұрын
the 3d reference khan made is beautiful . 😊
@moszczynskieng
@moszczynskieng 12 жыл бұрын
Another fantastic vector calculus video from Sal Khan! Many thanks!
@haroldh6678
@haroldh6678 6 жыл бұрын
Man... just amazing... just amazing
@ryanmonte
@ryanmonte 14 жыл бұрын
Yup. It's in a 2nd year calculus class at my university.
@mrbrohere
@mrbrohere 3 жыл бұрын
What are doing after university?😀
@VinothKumar-qo7ry
@VinothKumar-qo7ry 7 жыл бұрын
U are one f the excellent Proff.. I seen
@Barak314159
@Barak314159 10 жыл бұрын
You sir are amazing! You teach so well and in so many topics and I can just thank you infinite amount of times!
@lucidmath5481
@lucidmath5481 2 жыл бұрын
Sal can you please do some vids on intuitively explaining the volume integral?
@zh1412
@zh1412 13 жыл бұрын
wow thanks for helping me with the fundamentals surface integrals:)
@Liaomiao
@Liaomiao 13 жыл бұрын
why are we doing a double integral? all the vid saids was that we're going in 2 directions. But all the other times we've used double integrals is to find a volume under a surface...
@anmolabhayjain9721
@anmolabhayjain9721 5 жыл бұрын
Can anyone provide me with an explanation as to why during bijective transformation the boundary surface of one closed curve forms the boundary surface of the other closed curve or closed volume? That is why the boundary in u-v plane is also the boundary in x-y(or x,y,z for closed volume) plane of the transformed curve. Also assume that the transformation has a continuous first partial derivative over u and v.
@ShashankShekhar-de4ld
@ShashankShekhar-de4ld 8 жыл бұрын
thanks for giving this great intuition
@山卂丂丂山卂
@山卂丂丂山卂 5 жыл бұрын
Khan academy is the best
@MatthewFricke
@MatthewFricke 13 жыл бұрын
@abhi99ps people use different notations for magnitude
@xandersafrunek2151
@xandersafrunek2151 3 жыл бұрын
This series of videos is highly underrated.
@bangaloremathematicalinsti5351
@bangaloremathematicalinsti5351 4 жыл бұрын
One of the fantastic Explanation, Kudos to the Professor :)
@jingxie3126
@jingxie3126 12 жыл бұрын
which one is "the last video" referred at the beginning?
@ausaramun
@ausaramun 3 жыл бұрын
Parial Derivatives of vector-valued functions. (I know...a little late...)
@anonymous_4276
@anonymous_4276 3 жыл бұрын
@@ausaramun yeah. It's a "little" late.
@sakki3378
@sakki3378 3 жыл бұрын
@@ausaramun just a little lol
@yvonneho876
@yvonneho876 3 жыл бұрын
@@sakki3378 a tiny little bit
@agrajyadav2951
@agrajyadav2951 2 жыл бұрын
@@yvonneho876 miniscule (btw this reply might be a teeny tiny bit late as well)
@haidynagi7314
@haidynagi7314 7 жыл бұрын
Solve integration of. X^2/(x^4 +x^3 -1)
@bladox971
@bladox971 5 жыл бұрын
good luck guys
@Sam-dc9bg
@Sam-dc9bg 10 жыл бұрын
Thank you! Wow this was a good introduction.
@intellagent7622
@intellagent7622 6 жыл бұрын
makes sense now thanks
@GlorifiedTruth
@GlorifiedTruth 13 жыл бұрын
Thanks again, Sal.
@y0n1n1x
@y0n1n1x 3 жыл бұрын
The dislikes are from color blinds
@Cyclingdino
@Cyclingdino 12 жыл бұрын
I have one question, when we establish the domain of the parameters (s,t) , do we have to make sure the set of values is convex or not at all? I'd appreciate it if anyone could answer. Thank you
@smellypotatoes2292
@smellypotatoes2292 6 жыл бұрын
Hi thanks to your videos I learnt calculus at 6th grade
@bheemeshbommireddy4807
@bheemeshbommireddy4807 6 жыл бұрын
LETS STOP ARTICLE 13 sure bud
@Think0Like0Cheese
@Think0Like0Cheese 9 жыл бұрын
Thank you so much !!
@coolinglifee
@coolinglifee 12 жыл бұрын
you teach really good!
@dhimanroy1671
@dhimanroy1671 8 жыл бұрын
The third function may be charge density.
@jingxie3126
@jingxie3126 12 жыл бұрын
Thanks!
@thegoonist
@thegoonist 14 жыл бұрын
wow is this university level? ive never encountered this concept before
@DecaSpace
@DecaSpace 12 жыл бұрын
I feel that my scholarships, grants and money go to college or classroom that doesn't even explain this content as clear and well as a free KZbin video. I'm starting to really accept the idea that college education is overrated. You are just paying thousands of dollars to "certify" you - sometimes not even teach you well.
@lizjakubowski
@lizjakubowski 13 жыл бұрын
Can someone explain why the area of each parallelogram is given by the magnitude cross product TIMES ds dt? i understand the magnitude of the cross product, wouldn't that itself give the area of each parallelogram, and therefore the area of the surface when integrated? are ds dt representative of the tiny depth of that parallelogram?
@liquidstl
@liquidstl 14 жыл бұрын
@rachmaniralf you dont need differential equations or linear algebra?
@SotraEngine4
@SotraEngine4 4 жыл бұрын
is the partial cross product the Jacobian determinant?
@parthasarathym1882
@parthasarathym1882 5 жыл бұрын
I wonder why d(sigma) is not just equal to (dr/dt)X(dr/dt)
@hastyz7325
@hastyz7325 5 жыл бұрын
the magnitude of the cross product of two parellel vectors is 0. that wont span the surface
@norwayte
@norwayte 14 жыл бұрын
Very good. Keep on going.
@mrbrohere
@mrbrohere 3 жыл бұрын
Hey! How's life going after 11 years?
@jea1080
@jea1080 12 жыл бұрын
absolutely amazing!!!
@mandeep1244
@mandeep1244 12 жыл бұрын
truly helpful!
@TheAllboutwin
@TheAllboutwin 13 жыл бұрын
@karkrashful someone's missing something inside.
@vidhyalakshmim7616
@vidhyalakshmim7616 11 жыл бұрын
Which is the last video that he is referring to?
@binthui
@binthui 10 жыл бұрын
what's the video before this one :((?
@TheSunshineRequiem
@TheSunshineRequiem 10 жыл бұрын
partial derivatives of vector valued functions
@zuesr3277
@zuesr3277 8 жыл бұрын
It's about partials derivative of the vector valued functions.
@mrfrankincense
@mrfrankincense 10 жыл бұрын
What playlist is this in?
@zuesr3277
@zuesr3277 8 жыл бұрын
Calculus playlist
@abhi99ps
@abhi99ps 13 жыл бұрын
Shouldn't you put a double absolute value symbol for magnitude
@raydencreed1524
@raydencreed1524 6 жыл бұрын
abhi99ps It doesn’t matter. If you know what is meant by the symbols, then being anal about formalities like that isn’t going to help anyone
@nickvenanzi1607
@nickvenanzi1607 11 жыл бұрын
what program do u use
@eljapi9346
@eljapi9346 6 жыл бұрын
AMAZING
@Andrew6James
@Andrew6James 5 жыл бұрын
Given we have a square in the 2d space, why when we look at the volume in the 3d space do the lines now become curved?
@Harshhaze
@Harshhaze 5 жыл бұрын
The 2D graph is looking from the top down, and you can't see the curves on tube 3D graph from above
@That_One_Guy...
@That_One_Guy... 4 жыл бұрын
That's because they lies on 2 different planes (actually there's no special reason that the path in x,y,z is curved. It could also be a square too) and the fact that t and s variables are parametrizing ("writing") the path that lies on x,y,z plane but those 2 variable doesn't lies on that plane. The t,s variable graph form a square because you let one variable constant, another varies, and you also limit the value that the varying variable can take, meanwhile t,s variables form a curved path on x,y,z because they form 3 different 2 variables function (what i meant mathematically : x = f(t,s), y = g(t,s), z = h(t,s) ). Because this is a parametrized path, then x,y,z variables could be independent or dependent on each other, if z dependent on y and x then it forms a surface (z = h(t,s) = a(x,y) = a(f(t,s), g(t,s))
@That_One_Guy...
@That_One_Guy... 4 жыл бұрын
Example for 2D parametrization : A circle can be formed by : x = cos(t), y = sin(t) On xt plane, the equation form a *cosine graph*, on yt plane it form *sine graph*, but on xy plane it form a *circle*. Proof : t = arccos(x) (or arcsin(t)) => y = sin(arccos(x)) We know that cos(arccos(x)) = x = x/1, using pytaghorean and sine definition : sin(arccos(x)) = sqrt(1-x^2)/1 = sqrt(1-x^2) y = sqrt(1-x^2) => x^2 + y^2 = 1
@That_One_Guy...
@That_One_Guy... 4 жыл бұрын
Unfortunately we can't always express parameter function as function in term of x/y/z or some of them , so we just leave them as function of some variable t,s, whatever variable (as input) where x/y/z is the output variables
@adoado16
@adoado16 14 жыл бұрын
@thegoonist: It's multivariable calc, so most likely. :)
@akshatjindal6851
@akshatjindal6851 5 жыл бұрын
legend
@christofferbouwer8057
@christofferbouwer8057 9 жыл бұрын
He sounds like James Spader at times
@speedsterfilms2992
@speedsterfilms2992 4 жыл бұрын
songs to sleep to XD
@吳柏慶-t9l
@吳柏慶-t9l 2 жыл бұрын
make sense nice
@vtron9832
@vtron9832 7 жыл бұрын
The only thing I know which I regret saying is that Sal sucks at making nice looking graphs
@jakiasultanajui4588
@jakiasultanajui4588 7 жыл бұрын
can someone explain why this double integral .
@PopularityTroll
@PopularityTroll 7 жыл бұрын
there are two variables
@wontpower
@wontpower 7 жыл бұрын
When you integrate over the area of the region, you're really integrating over dsdt
@romantorres1093
@romantorres1093 8 жыл бұрын
im watching this in my class while i have a test wish me luck ( my test is 2 hours long)
@yanxu6907
@yanxu6907 9 жыл бұрын
can u add subtitle
@sabiansmasher2000
@sabiansmasher2000 9 жыл бұрын
Why would I need to know this for civil engineering...such b.s. Well explained though!
@emlmm88
@emlmm88 7 жыл бұрын
Flux and surface integrals are imperative to understanding continuum mechanics topics (like crack propagation) and heat transfer processes between materials.
@xxxcoolboyxxx
@xxxcoolboyxxx 13 жыл бұрын
@adamgil91 why does it matter?
@k1rv0lak
@k1rv0lak 7 жыл бұрын
I understand this stuff and I'm an infant... What is wrong with me???
@anonymoustraveller2254
@anonymoustraveller2254 7 жыл бұрын
DIv haha , the comment you trolled was just above your comment😂
@Abhijitsings07
@Abhijitsings07 3 ай бұрын
Ur no more an infant now.
@MrLeifArnesen
@MrLeifArnesen 13 жыл бұрын
Would you like to take my calc 3 final?
@victorian4j
@victorian4j 13 жыл бұрын
2 ppl dislike this video cause they failed their exams.. :(
@JustAnotherPers0n
@JustAnotherPers0n 11 жыл бұрын
looks like smooching lips 4:40
@pebble2529
@pebble2529 5 жыл бұрын
JustAnotherPers0n ikr
@beckhamroyjenkins4223
@beckhamroyjenkins4223 Жыл бұрын
4:22 the transformed surface looks like lips
@FlowFusionMusic
@FlowFusionMusic 13 жыл бұрын
@rinwhr people make people make people.
@zuesr3277
@zuesr3277 8 жыл бұрын
I now know calculus and linear algebra with finance statistics economics and probability and I am at 9th grade is something wrong with me. Is it OK.
@kendallcarter3491
@kendallcarter3491 8 жыл бұрын
That's an astounding thing in 9th grade I struggle in algebra alone.
@beiberu
@beiberu 2 жыл бұрын
Wow
@HL-iw1du
@HL-iw1du 5 жыл бұрын
6:31 “diffrential”
@allenoh1569
@allenoh1569 11 жыл бұрын
I am not a huge fan of Anthony Tromba.
@Nutterbutterz95
@Nutterbutterz95 11 жыл бұрын
Too damn hard!
@DakaloMudau-j9c
@DakaloMudau-j9c Ай бұрын
am i the only one who sees the joker?
@dillonberger4036
@dillonberger4036 10 жыл бұрын
I don't mean to be pedantic, but the graphs you used at 2:50 don't quite match up. I understand and follow what you're doing completely, but shouldn't your axes on the right graph be labeled s, t, and z?
@dillonberger4036
@dillonberger4036 10 жыл бұрын
Or perhaps there ought to be a condition such that x=s and y=t.
@magicguy1988
@magicguy1988 10 жыл бұрын
Dillon Berger He was exploring how the st-plane is mapped to 3D space using r(s, t) as a position vector function for some surface. It's conventional to label 3D axes as x, y and z
@gus-padovany
@gus-padovany 10 жыл бұрын
On the 3D space the x-axis is not the same as the s-axis and the y-axis is not the same as the t-axis. x y and z are functions of s and t, as he pointed out. f( x(s,t), y(s,t), z(s,t)) . It's a transformation, they're not the same.
@raydencreed1524
@raydencreed1524 6 жыл бұрын
Dillon Berger No, apparently you mean to be wrong.
@coolinglifee
@coolinglifee 12 жыл бұрын
Women make sandwiches.
@aidantdavis
@aidantdavis 8 жыл бұрын
I understand this stuff in 7th grade... What is wrong with me???
@ich123binsimmernoch
@ich123binsimmernoch 8 жыл бұрын
+aidantdavis be happy about it
@hl7297
@hl7297 8 жыл бұрын
You have superpower, go find Prof. X
@rizvanahmedrafsan
@rizvanahmedrafsan 7 жыл бұрын
at 7th grade most of us were attention whores xD
@financewithsom485
@financewithsom485 7 жыл бұрын
Great
@abdallahableel4373
@abdallahableel4373 7 жыл бұрын
You're gonna be getting straight A's in college . lol I'm 20 & i still youtube this
@muhammadmustaqimbinsamsudi4784
@muhammadmustaqimbinsamsudi4784 7 жыл бұрын
Thank you! Wow this was a good introduction.
87 - Surface integrals of vector fields
29:01
הטכניון - מכון טכנולוגי לישראל
Рет қаралды 59 М.
Увеличили моцареллу для @Lorenzo.bagnati
00:48
Кушать Хочу
Рет қаралды 8 МЛН
I thought one thing and the truth is something else 😂
00:34
عائلة ابو رعد Abo Raad family
Рет қаралды 10 МЛН
When Cucumbers Meet PVC Pipe The Results Are Wild! 🤭
00:44
Crafty Buddy
Рет қаралды 60 МЛН
What is Integration? 3 Ways to Interpret Integrals
10:55
Math The World
Рет қаралды 399 М.
so you want a HARD integral from the Berkeley Math Tournament
22:28
blackpenredpen
Рет қаралды 560 М.
Surface Integrals // Formulas & Applications // Vector Calculus
8:18
Dr. Trefor Bazett
Рет қаралды 111 М.
Line Integrals Are Simpler Than You Think
21:02
Foolish Chemist
Рет қаралды 128 М.
Stokes' theorem intuition | Multivariable Calculus | Khan Academy
12:12
Surface Integrals
19:45
MIT's Experimental Study Group
Рет қаралды 260 М.
Увеличили моцареллу для @Lorenzo.bagnati
00:48
Кушать Хочу
Рет қаралды 8 МЛН