Here’s a question that I have in mind for a while now but haven’t seen any proof or page about it. Q: does differentiation under the integral sign work for indefinite integral? To me, it seems like it should be. But I haven’t seen anyone talks or does it.
@MuPrimeMath5 жыл бұрын
Based on this proof, I think the Leibniz rule does work for indefinite integrals: en.m.wikipedia.org/wiki/Leibniz_integral_rule#Proof_of_basic_form If you follow the process that I used in my integral of ln(x) with Feynman's trick video for the indefinite integral, you still get the right answer. I think it's just that +C makes it harder to deal with.
@blackpenredpen5 жыл бұрын
@@MuPrimeMath Ah, thanks!
@user-wu8yq1rb9t2 жыл бұрын
Great as always. I hope you'll decide to continue this playlist (Laplace). Thank you so much 💕
@isaswa16025 жыл бұрын
4:50 is Fubini's theorem even valid under implicit integral ? I'd like to see a formal prove if so, thanks !
@anegativecoconut49405 жыл бұрын
3:58 Why when I hear this passage I hear some french music and see Fubini, some weird Lebesgue, and the Wikipedia page for the Dominated Convergence theorem?
@marcschmidtpujol5506 ай бұрын
Great explanation!
@shreyasujagar6435 ай бұрын
crystal clear, thank you!
@minicachoro4 жыл бұрын
You saved me! Thank you so much!!!
@l.JAI.SHREE.RAM.l4 ай бұрын
Is there not any theorem as - ℒ⁻¹{∫[s ∞] f(u) du} = F(t)/t
@benjaminbrady23855 жыл бұрын
Interchange of partial derivative and integral may not be valid as you've pointed out yourself my boi: kzbin.info/www/bejne/sHKqgn5_fL-Hm9E
@MuPrimeMath5 жыл бұрын
The rule applies for any function f(t) such that f(t)e^(-st) has a partial derivative that exists and can be integrated over (0, inf). The Dirac delta function is a special case!
@Raizensen94153 жыл бұрын
Let f(t)=1 When t>=0 Find L{f(t)}
@ayoubachak015 жыл бұрын
This seems useless 😧 But nice work ❤ I'm a fan 😍
@MuPrimeMath5 жыл бұрын
You can see a video where I used this identity to solve a differential equation here: kzbin.info/www/bejne/Y6WpgWiFqbymd6M