I think it’s a great equation to solve. The question should have stated x is a real number. So there are no domain restrictions for X. However m should always be positive coz it’s the square of x. In this case both 2 and the positive radical value providing two positive and two negative roots. The highest power of x is 8. Since x is real 4 roots are correct.
@ccudmore Жыл бұрын
You reject the second option because you state that x must be a positive integer but then accept the first solution of root 2 - which is not an integer
@muqaddasadnan1743 Жыл бұрын
If x is a positive integer then how sqrt 2 is an integer?
@BP-gn2cl2 ай бұрын
This is a very long, tedious and not logically concluded process.
@ManjulaMathew-wb3zn10 ай бұрын
What I really value is the method. The substitution of n divides the expression in to 2 factors each having 4th power of the variable. Then the substitution of m split each of the above factors in to two quadratic factors. Good approach overall.
@BP-gn2cl2 ай бұрын
Reject t=-3, (1-√29) /2 outrightly Then reject t=(1+√29) /2 as it will give x^4>7
@에스피-h8t Жыл бұрын
Solution by insight Let x^2=t t^2+rt(t+7)=7 2^2+rt9=7 t^2=2 x=rt2 or -rt2
@muqaddasadnan1743 Жыл бұрын
Is √2 is an integer?
@samuelbenet0075 ай бұрын
Peux-tu expliquer pourquoi x devrait être un nombre entier ?
@BP-gn2cl2 ай бұрын
Just substitute x^2=t
@BP-gn2cl2 ай бұрын
Also x^2=(1+√29) /2 value is rejected because in that case x^4>7
@cyberxnova10 ай бұрын
DIFFERENT APPROACH ( find the mistake challenge ) x^4 + √(x^2 + 7) = 7 x^2 = [7 - √(x^2 + 7)]^2 x^2 = 49 + x^2 + 7 -14√(x^2 + 7) x squrt will cancel out and after furthur solving we will get, √(x^2 + 7) = 56/14 = 4 x^2 = 16 -7 = 9 x = √9 x = ±3 Challenge -- find mistake
@samuelbenet0078 ай бұрын
Il faut dire x = ±√9 (et non x = √9 , car √9 = 3 (jamais -3) !! Sinon (±3)^4 + √((±3)^2 + 7) = 85 (et non 7) ^^
@BP-gn2cl2 ай бұрын
Your mistake is in the first step X^2=[7-(√x^2+7)]^1/2 And instead of power 1/2 u have written 2.
@muqaddasadnan1743 Жыл бұрын
If x>0 then how we will take -√2
@newtime181111 ай бұрын
m >0 , not x >0
@BP-gn2cl2 ай бұрын
U will get t=2, -3, (1+/-√29) /2
@BP-gn2cl2 ай бұрын
Very long and tedious process.
@BP-gn2cl2 ай бұрын
So only real solutiins are x=+/-√2
@BETEP_BECT11 ай бұрын
Х^Х=7 ?
@samueldeandrade853511 ай бұрын
That's wrong.
@samuelbenet0078 ай бұрын
Le résultat semble être bon, mais dans son raisonnement, il y a une (ou plusieurs) erreur(s)