Learning the Runge-Kutta Method 1. Basic Runge-Kutta

  Рет қаралды 46,150

Let's Code Physics

Let's Code Physics

Күн бұрын

Пікірлер: 23
@JohnVKaravitis
@JohnVKaravitis 4 жыл бұрын
The value of this brief video is the overall explanation of k1 thru k4, what you're doing, and the revelation as to why it is so accurate. Thank you.
@nefereous9082
@nefereous9082 3 жыл бұрын
this video is really good and quick, now i have the intuition to study further
@fxbros5034
@fxbros5034 7 ай бұрын
Just a fyi: at 2:09 it shows "x_ecm = x_ecm + fun(t,x)*dt". However in the actual code it is "x_ecm = x_ecm + fun(t,x_ecm)*dt"
@deniz.7200
@deniz.7200 Жыл бұрын
The explanation with code is really helpful
@rahav811
@rahav811 2 ай бұрын
thank you, this was very focused and helpful.
@pppooppoo7763
@pppooppoo7763 Жыл бұрын
Shouldn't the k equations be timestep * function?
@misterx8934
@misterx8934 4 жыл бұрын
Hi, shouldn't it be x_ecm = x_ecm + fun(t, x_ecm)*dt? :)
@LetsCodePhysics
@LetsCodePhysics 4 жыл бұрын
...but the mistake helps make my point!
@jasonthomas2908
@jasonthomas2908 7 ай бұрын
Nice video. I just thought I'd mention, that when you say the Runge Kutta Method has 4 points to calculate, then you're specifically talking about the 4th Order Runge Kutta Method. There are other orders. There are also other coefficients, and you're using Runge's coefficients. Anyway, still a good video, cheers
@NZIT1
@NZIT1 6 жыл бұрын
Hi, I tried to follow step by step your code unfortunately when running the code the graph doesn't display. I am just wondering what kind of module in python do you import? In my case I have imported 1-Matplotlib.pyplot as plt and 2- numpy. Thanks
@LetsCodePhysics
@LetsCodePhysics 6 жыл бұрын
This series' codes are made with VPython (Vpython.org). You can also access the code from the video description.
@shahriarhabibi8382
@shahriarhabibi8382 7 ай бұрын
Very nice!
@shahriarhabibi8382
@shahriarhabibi8382 7 ай бұрын
Thanks a lot!
@ddylancristo9229
@ddylancristo9229 6 жыл бұрын
thanks a lot :)
@WhateverOwO
@WhateverOwO 4 ай бұрын
I still don't get it. Like when you define the derivative what does the argument x do, you never use it in your calculations so what is it doing there?
@AgnaktoreX
@AgnaktoreX 3 ай бұрын
This is indeed true for the first example: x'(t) = 3 * t^2 The second example at 1:53 uses the parameter x: x'(t) = x(t)
@WhateverOwO
@WhateverOwO 3 ай бұрын
Oh, oh, OH.... dude, math notation gets confusing if there's no clarification or footnotes or anything, Wikipedia sucks at explaining the thing ​@@AgnaktoreX
@abhimanyusinghkhichi6515
@abhimanyusinghkhichi6515 4 жыл бұрын
can you please explain rate(100) line in the code ?
@LetsCodePhysics
@LetsCodePhysics 4 жыл бұрын
rate controls the animation speed in frames per second. It has no impact on the physics model.
@abhimanyusinghkhichi6515
@abhimanyusinghkhichi6515 4 жыл бұрын
@@LetsCodePhysics thanks for explaining
@zman97211
@zman97211 3 жыл бұрын
At kzbin.info/www/bejne/bpCzn3aJqKaSeLM you pass x (and even refer to it in your voiceover), but it's not even used in fun()? In fun(), you're assigning the result (a real number) to a variable of the same name (fun). You're right, the weighted average happens on line 27, but the stuff highlighted immediately before has absolutely no effect, unless you've redefined the language somewhere I can't see. Otherwise, I get the drift, and thanks for a quick 2 minute primer on this.
@zman97211
@zman97211 3 жыл бұрын
Oh, I see, immediately afterward you DO use x in fun(). You should avoid that name collision though. Thanks again.
@gopnikboy
@gopnikboy 7 ай бұрын
still not the perfect explaination but getting closer for sure. how has there been no good visual explanations for numerical methods? man my studies are so much harder than they have to be its simple stuff always explained like the most complex shit
Learning the Runge-Kutta Method 2. Adaptive Step Size
2:41
Let's Code Physics
Рет қаралды 20 М.
Why Runge-Kutta is SO Much Better Than Euler's Method #somepi
13:32
Phanimations
Рет қаралды 161 М.
СИНИЙ ИНЕЙ УЖЕ ВЫШЕЛ!❄️
01:01
DO$HIK
Рет қаралды 3,3 МЛН
Гениальное изобретение из обычного стаканчика!
00:31
Лютая физика | Олимпиадная физика
Рет қаралды 4,8 МЛН
Building Agents with Llama Stack
3:09
Meta Developers
Рет қаралды 3,4 М.
Programming with Math | The Lambda Calculus
21:48
Eyesomorphic
Рет қаралды 246 М.
Learn Machine Learning Like a GENIUS and Not Waste Time
15:03
Infinite Codes
Рет қаралды 232 М.
Why Does Diffusion Work Better than Auto-Regression?
20:18
Algorithmic Simplicity
Рет қаралды 398 М.
Physics Students Need to Know These 5 Methods for Differential Equations
30:36
Physics with Elliot
Рет қаралды 1,1 МЛН
Where Does Bad Code Come From?
42:21
Molly Rocket
Рет қаралды 205 М.
Verlet Integration
1:20:59
pikuma
Рет қаралды 28 М.
СИНИЙ ИНЕЙ УЖЕ ВЫШЕЛ!❄️
01:01
DO$HIK
Рет қаралды 3,3 МЛН