Question: How can we imply that H has 8 element of order 3 by preceding conclusion in the last proof for Converse of Lagrange? please explain sir Answer: H=aH=a^2H => a or a^2 in H (by aH=bHa^(-1)b in H) Thus in any cases all elements of order 3 must be in H.
@archanakumarimeena30583 жыл бұрын
Sir Jo an ke subgroup nikalne Ka formula vhi An Ka BHI h? Aur 11:31 par Hume kese pata Chala ki order 4 Ka subgroup k4 type hoga?15:06 par ye kese imply hua ki h have to contain 8 elements of order 3.aur a^3 h = h kese hua . please sir reply Karna really needed
@chanchalkumari13055 жыл бұрын
Sir kleins group formed by A4 is abelian?
@POOJASINGH-mr1vp6 жыл бұрын
Sir ek lecture simple group par bhi upload kar dijiye plz
@RKK5-55 жыл бұрын
How can we imply that H has 8 element of order 3 by preceding conclusion in the last proof for Converse of Lagrange? please explain sir
@MathematicalScience5 жыл бұрын
H=aH=a^2H => a or a^2 in H (by aH=bHa^(-1)b in H) Thus in any cases all elements of order 3 must be in H.
@yogendravishwakarma55925 жыл бұрын
Very good concept you explained sir thanks... sir please Ring theory bhi karaiye for our gate exam.
@laxmisomani47266 жыл бұрын
SIR PLEASE PLEASE UPLOAD LEC ON HOMOROPHISMS AND ISOMORPHISMS OF GROUP PLEASE SIR BOHOT PROBLEM HO RHI H QUESTIONS SOLVE KRNE ME
@prerakpatel58084 жыл бұрын
Nice sir
@sark5803 жыл бұрын
SE nahi samjh me aya sir
@rincypp26774 жыл бұрын
thank you sir
@brijeshprabhakar82567 жыл бұрын
pls make videos on ring theory also
@MathematicalScience7 жыл бұрын
we are working on ring theory, we will upload asap
@SpiritualEntity3084 жыл бұрын
Kya kr rha h bhai, Gallian ki book Ka ek ek word copy kr rha hai ,khud apna bhi samjhane Ka tarika hot hai