Lecture 1: Introduction

  Рет қаралды 42,563

Geoff Gordon

Geoff Gordon

Күн бұрын

Пікірлер: 8
@Ewerlopes
@Ewerlopes 6 жыл бұрын
Starts at 11:36
@professorgeoff
@professorgeoff 11 жыл бұрын
The topics are described at the link above (KZbin won't allow links in comments, so I can't repeat it here). Online optimization in the sense of no-regret isn't really covered, although we definitely talk about some online algorithms like generalized gradient descent. For the other topic, fast algorithms are definitely a big part of the course.
@JAmos125
@JAmos125 11 жыл бұрын
This is seriously an amazing help. Thank you so much for making these available.
@professorgeoff
@professorgeoff 11 жыл бұрын
Thanks, glad you like them!
@BrokenRecord-i7q
@BrokenRecord-i7q 2 жыл бұрын
Professor you were a true visionary ❤️
@bcsf05a035
@bcsf05a035 11 жыл бұрын
Hello. Are concepts related to online optimization covered in this course? What about optimizing in limited time i.e. when the optimization algorithm has a limited (or even shorter than the time need to find an optimal solution)? Thanks in advance.
@ziyunli2436
@ziyunli2436 5 жыл бұрын
where can find all the slices?
@temuddschin
@temuddschin 6 жыл бұрын
Hi, if I am specifically interested in dual averaging, which lectures should I watch ? For sure the first 7 lectures, but else ?
Lecture 2: Intro; Gradient descent
1:14:55
Geoff Gordon
Рет қаралды 9 М.
Каха и дочка
00:28
К-Media
Рет қаралды 3,4 МЛН
Sigma Kid Mistake #funny #sigma
00:17
CRAZY GREAPA
Рет қаралды 30 МЛН
人是不能做到吗?#火影忍者 #家人  #佐助
00:20
火影忍者一家
Рет қаралды 20 МЛН
Don’t Choose The Wrong Box 😱
00:41
Topper Guild
Рет қаралды 62 МЛН
S18 Lecture 23: Reinforcement Learning
1:14:18
Carnegie Mellon University Deep Learning
Рет қаралды 22 М.
2. Optimization Problems
48:04
MIT OpenCourseWare
Рет қаралды 230 М.
Lecture 01: Course Overview (CMU 15-462/662)
1:03:59
Keenan Crane
Рет қаралды 60 М.
Algorithmic Game Theory (Lecture 1: Introduction and Examples)
1:09:24
Tim Roughgarden Lectures
Рет қаралды 214 М.
Lecture 1 | Convex Optimization I (Stanford)
1:20:33
Stanford
Рет қаралды 721 М.
What Is Mathematical Optimization?
11:35
Visually Explained
Рет қаралды 138 М.
Machine Learning: Inference for High-Dimensional Regression
54:54
Becker Friedman Institute University of Chicago
Рет қаралды 16 М.
1.1 Optimization Methods - Motivation and Historical Perspective
27:58
Julius Pfrommer
Рет қаралды 31 М.
Lecture 3 | Learning, Empirical Risk Minimization, and Optimization
1:18:43
Carnegie Mellon University Deep Learning
Рет қаралды 17 М.
Каха и дочка
00:28
К-Media
Рет қаралды 3,4 МЛН