Lecture 12 | Convex Optimization I (Stanford)

  Рет қаралды 34,765

Stanford

Stanford

Күн бұрын

Пікірлер: 8
@shiv093
@shiv093 4 жыл бұрын
0:23 Experiment design(recap) 8:10 derivation of the dual 10:18 Geometric problems (minimum volume ellipsoid around a set) 35:20 Maximum volume inscribed ellipsoid 48:40 Efficiency of ellipsoidal approximations 1:00:16 Centering 1:04:28 Analytic center of a set of inequalities 1:07:25 analytic center of linear inequalities 1:08:33 Linear discrimination
@michaelmellinger2324
@michaelmellinger2324 2 жыл бұрын
50:35 ellipsoids are universal approximators of convex sets 54:55 We don’t care about sums of squares of things. It’s just because we can do it. And that’s the only class I took so far
@heizilyu
@heizilyu 13 жыл бұрын
the fact that we don't assume A to be symmetric and pd (20:00) can be more easily shown if ||Av+b||_2 is expanded and we do symmetric decomposition of the matrix A^TA.
@MaxWasserman1
@MaxWasserman1 3 жыл бұрын
Around @54:00 he talks about justifying e.g. 2-norm on pitch-rate in the objective in helicopter design. He then goes on to talk about actually finding the 'acceptable' convex set C of outcomes (pitch rate, rms, etc) via simulation, survey, etc and suggests we find the maximum volume inscribed ellipsoid E_max = {x || Ax + b||_2
@shupengwei9419
@shupengwei9419 6 жыл бұрын
10:29 geometric problems
@mrweisu
@mrweisu 10 ай бұрын
For the outliers problem, just fit a R10 Normal distribution with unknown mean and variance. Sort the likelihood from small to large! Easier than peeling ellipsoids!
@annawilson3824
@annawilson3824 11 ай бұрын
1:05:00
@toddflanagan5531
@toddflanagan5531 4 жыл бұрын
Ch. 8
Lecture 13 | Convex Optimization I (Stanford)
1:15:17
Stanford
Рет қаралды 33 М.
Lecture 15 | Convex Optimization I (Stanford)
1:16:45
Stanford
Рет қаралды 53 М.
Что-что Мурсдей говорит? 💭 #симбочка #симба #мурсдей
00:19
Гениальное изобретение из обычного стаканчика!
00:31
Лютая физика | Олимпиадная физика
Рет қаралды 4,8 МЛН
Lecture 11 | Convex Optimization I (Stanford)
1:17:03
Stanford
Рет қаралды 41 М.
System Dynamics: Systems Thinking and Modeling for a Complex World
55:58
MIT OpenCourseWare
Рет қаралды 272 М.
Lecture 16 | Convex Optimization I (Stanford)
1:13:59
Stanford
Рет қаралды 37 М.
Lec 1 | MIT 9.00SC Introduction to Psychology, Spring 2011
49:44
MIT OpenCourseWare
Рет қаралды 2,9 МЛН
Real-Time Convex Optimization
25:44
Simons Institute
Рет қаралды 9 М.
The Continuity of Splines
1:13:50
Freya Holmér
Рет қаралды 1,4 МЛН
Lecture 5 | Convex Optimization I (Stanford)
1:16:10
Stanford
Рет қаралды 121 М.