Lecture 25.5 - The Intermediate Value Theorem for Integrals

  Рет қаралды 1,508

Real Analysis Summer 2020 - Max Wimberley

Real Analysis Summer 2020 - Max Wimberley

Күн бұрын

We prove the Intermediate Value Theorem for Integrals, which states that a continuous function f on [a, b] must achieve its "average value" (defined as the integral of f on [a, b] divided by the length of the interval) at some point in (a, b).

Пікірлер
Lecture 25.6 - Dominated Convergence
14:17
Real Analysis Summer 2020 - Max Wimberley
Рет қаралды 535
Hardy's Integral
13:47
Michael Penn
Рет қаралды 15 М.
How to treat Acne💉
00:31
ISSEI / いっせい
Рет қаралды 108 МЛН
When you have a very capricious child 😂😘👍
00:16
Like Asiya
Рет қаралды 18 МЛН
99.9% IMPOSSIBLE
00:24
STORROR
Рет қаралды 31 МЛН
Lecture 25.4 - Piecewise Integration
22:24
Real Analysis Summer 2020 - Max Wimberley
Рет қаралды 374
Lecture 24.4 - A Cauchy Criterion for Integrability
13:28
Real Analysis Summer 2020 - Max Wimberley
Рет қаралды 2 М.
Lecture 24.5 - Another Cauchy Criterion for Integrability
24:58
Real Analysis Summer 2020 - Max Wimberley
Рет қаралды 605
Lecture 24.2 - Examples of Integrable and Non-Integrable Functions
13:49
Real Analysis Summer 2020 - Max Wimberley
Рет қаралды 2,8 М.
Lecture 25.3 - Inequalities with Integrals
10:48
Real Analysis Summer 2020 - Max Wimberley
Рет қаралды 277
Lecture 24.6 - The Riemann Integral
25:03
Real Analysis Summer 2020 - Max Wimberley
Рет қаралды 367
Lecture 24.3 - Comparing Upper and Lower Sums
13:31
Real Analysis Summer 2020 - Max Wimberley
Рет қаралды 293
Lecture 26.1 - Integrating Derivatives
18:49
Real Analysis Summer 2020 - Max Wimberley
Рет қаралды 318
Lecture 25.2 - Linearity of Integration
23:50
Real Analysis Summer 2020 - Max Wimberley
Рет қаралды 347
Lecture 25.1 - Classes of Integrable Functions
17:50
Real Analysis Summer 2020 - Max Wimberley
Рет қаралды 464