Lesson 6 - Theoretical Foundations of Copulas (Sklar's Theorem)

  Рет қаралды 5,307

Kiran Karra

Kiran Karra

Күн бұрын

Пікірлер: 13
@nickmillican22
@nickmillican22 Жыл бұрын
Glad somebody is filling this gap in youtube! Much appreciated
@KiranKarra87
@KiranKarra87 Жыл бұрын
Thank you for your kind comments! I'd be happy to dive into more detail on any of these topics and create videos for them if you have any suggestions of specific material related to copulas that you'd like to see. Feel free to leave comments on this!
@vahidnikoofard2939
@vahidnikoofard2939 Ай бұрын
Excellent course! I'm enjoying a lot
@swP-z4v
@swP-z4v Жыл бұрын
这对我学习copula函数提供了有很大的帮助,非常感谢你的分享。
@heshaniachinthika5327
@heshaniachinthika5327 6 ай бұрын
Can you suggest some references for further reading.
@KiranKarra87
@KiranKarra87 3 ай бұрын
Hi - yes, sorry for the late reply as I'm catching up on everything. The main reference for copula's is Roger Nelsen's "Introduction to Copulas" - You can find it on Amazon or other bookstores!
@Tyokok
@Tyokok 20 күн бұрын
HI Kiran, first thank you so much for the GREAT lecture and example! 2nd, if I may have some questions: 1. so copula is just an advanced kind of joint distribution that allows more flexibility (e.g. different marginal, configurable parameter ...etc.) right? 2. in terms of how to use copula. Gaussian copula is pretty much our traditional multivariate Normal distribution, with correlation dependency info embedded. If you use Gaussian Copula means you ASSUME between those marginal variable they have the multi-normal correlation dependency, but you just can apply different kind of marginal distribution other than Normal after you generate random sample from this Copula, right? 3. in terms of how to use copula. Other copula (e.g. Archimedean Copula), meaning first you ASSUME the dependency relation info between marginal variables are embedded in this particular Copula, and then you need ASSUME different marginal distribution based on your best knowledge and apply on to random sample you generate from this copula, right? 4. so that all we can use are the existing well defined or developed Copula libraries right (before any new defined copula discovered) ? Do they cover all kinds of the dependent relation, such as square, log, ... ? Thank you so much for your advice in advance!
@KiranKarra87
@KiranKarra87 14 күн бұрын
Hey! Great questions. 1 - I would consider the copula to be a general representation of a joint distribution. The generalization enables you to represent any marginal distribution as two separate components: a) a dependence structure / coupling function (ie copula) b) the marginal distributions 2 - the Gaussian copula itself is not the same as a joint multivariate distribution, but a Gaussian copula with Gaussian marginals is a joint multivariate Gaussian distribution 3 - you can assume a dependence structure if you have prior knowledge about the underlying mechanics of the data. The other alternative is to sample data from the process that you want to model and then fit a copula to it. The hard thing here is to get fully representative data. 4 - this is a pretty open ended question but the properties of a copula are well defined . We may choose to name copulas bc they have some useful properties etc but you can always use whatever coupling function you want
@Tyokok
@Tyokok 11 күн бұрын
@@KiranKarra87 Hey Kiran, great explanation also. Really appreciate it!
@emmanuelandre2807
@emmanuelandre2807 11 ай бұрын
Hi, there is an issue with how you generated the gaussian copula from the normal dist, here is a revised code which works better: import numpy as np from scipy.stats import norm import matplotlib.pyplot as plt # Covariance matrix and parameters P = np.asarray([ [1, 0.90], [0.90, 1] ]) d = P.shape[0] n = 500 alpha = 6 # Cholesky Decomposition for Gaussian Copula A = np.linalg.cholesky(P) # Generate uniform samples for both copulas U_samples = np.random.rand(n, d) # Gaussian Copula # Transform the uniform samples to Gaussian using the inverse CDF (norm.ppf) Z = norm.ppf(U_samples) # Apply the correlation by multiplying with the Cholesky decomposition X_Gauss = np.dot(Z, A.T) # Convert the correlated Gaussian samples back to uniform U_Gauss = norm.cdf(X_Gauss) # Clayton Copula # Transform the same U_samples for Clayton Copula u = U_samples[:, 0] v = ((U_samples[:, 1] / u**(-alpha-1))**(-alpha/(1+alpha)) - u**(-alpha) + 1)**(-1/alpha) U_Clayton = np.column_stack((u, v)) # Transform the uniform samples from the Clayton copula to Gaussian X_Clayton = norm.ppf(U_Clayton) # Visualization plt.figure(figsize=(12, 6)) plt.subplot(1,2,1) plt.scatter(X_Gauss[:,0], X_Gauss[:,1]) plt.xlabel('$\mathcal{N}(0,1)$') plt.ylabel('$\mathcal{N}(0,1)$') plt.title('Gaussian Copula $p=%0.02f$' % P[0,1]) plt.subplot(1,2,2) plt.scatter(X_Clayton[:,0], X_Clayton[:,1]) plt.xlabel('$\mathcal{N}(0,1)$') plt.ylabel('$\mathcal{N}(0,1)$') plt.title('Clayton Copula $\\alpha=%0.02f$' % alpha) plt.tight_layout() plt.show()
@toastedsesamebun
@toastedsesamebun Жыл бұрын
Thank you for the videos!
@italocegatta
@italocegatta Жыл бұрын
thanks! great video
@MegaMatzzz
@MegaMatzzz Жыл бұрын
i love u bro this was great!
Lesson 7 - Closed Form Copulas
21:22
Kiran Karra
Рет қаралды 3,7 М.
The Key Equation Behind Probability
26:24
Artem Kirsanov
Рет қаралды 131 М.
Osman Kalyoncu Sonu Üzücü Saddest Videos Dream Engine 262 #shorts
00:20
"كان عليّ أكل بقايا الطعام قبل هذا اليوم 🥹"
00:40
Holly Wolly Bow Arabic
Рет қаралды 15 МЛН
Human vs Jet Engine
00:19
MrBeast
Рет қаралды 150 МЛН
Osman Kalyoncu Sonu Üzücü Saddest Videos Dream Engine 269 #shorts
00:26
3Blue1Brown's Probability Challenge Solved!
28:51
Dr Mihai Nica
Рет қаралды 72 М.
Multivariate Gaussian distributions
14:49
Alexander Ihler
Рет қаралды 268 М.
Copulas - learning the basics
29:13
Paul Sweeting
Рет қаралды 25 М.
A Simple Introduction to Copulas
16:54
Dirty Quant
Рет қаралды 33 М.
Lesson 9 - Introduction to Vine Copulas
23:03
Kiran Karra
Рет қаралды 4,3 М.
The New Statistics: A Modern Approach to Data Analysis
20:35
What are p-values?? Seriously.
26:00
zedstatistics
Рет қаралды 179 М.
Introduction to Copulas
12:48
MJ the Fellow Actuary
Рет қаралды 36 М.
Osman Kalyoncu Sonu Üzücü Saddest Videos Dream Engine 262 #shorts
00:20