Let's Solve A Nice Polynomial Equation | Math Olympiads

  Рет қаралды 4,946

SyberMath

SyberMath

Күн бұрын

Пікірлер: 27
@NadiehFan
@NadiehFan 8 ай бұрын
As has already been noted here, the best approach seems to be to create symmetry. We have (x + (2 − x))/2 = 2/2 = 1 so the quantities x and 2 − x are equidistant from 1, which is their average. Half their difference is (x − (2 − x))/2 = (2x − 2)/2 = x − 1 so we have x = 1 + (x − 1) and 2 − x = 1 − (x − 1) and we can therefore set x − 1 = z which gives x = 1 + z and 2 − x = 1 − z so the equation becomes (1 + z)⁵ + (1 − z)⁵ = 82 which gives z⁴ + 2z² − 8 = 0 which is a quadratic in z² that is easily solved. (z² − 2)(z² + 4) = 0 z = √2 ∨ z = −√2 ∨ z = 2i ∨ z = −2i and since x = 1 + z this gives x = 1 + √2 ∨ x = 1 − √2 ∨ x = 1 + 2i ∨ x = 1 − 2i
@bobbyheffley4955
@bobbyheffley4955 8 ай бұрын
1+sqrt 2 is the silver ratio.
@wes9627
@wes9627 8 ай бұрын
Substitute x=y+1 into the given equation and rearrange to (y+1)^5-(y-1)^5-82=0. Pascal's triangle: 1 5 10 10 5 1 The odd powers of y cancel out leaving 2(5y^4+10y^2+1)-82=0 or y^4+2y^2-8=0 Thus, y^2=(-2±6)/2=2 or -4 and y=±√2 or ±2i. It follows that x=y+1=1±√2 or 1±2i
@molodoy564
@molodoy564 8 ай бұрын
Nice , I also decided
@MrGeorge1896
@MrGeorge1896 8 ай бұрын
Yes, I took the same path. It is much more straight forward and less error prone.
@NadiehFan
@NadiehFan 8 ай бұрын
Regarding your first method: the quartic equation x⁴ − 4x³ + 8x² − 8x − 5 = 0 is easily solved by completing the square twice. You should really have done that because it is quite instructive. First complete the square with respect to the quartic and cubic terms, which gives us (x² − 2x)² + 4x² − 8x − 5 = 0 Now observe that we can factor out 4 from the quadratic and linear terms which gives (x² − 2x)² + 4(x² − 2x) − 5 = 0 Now again complete the square with respect to the quadratic and linear terms which gives ((x² − 2x) + 2)² − 4 − 5 = 0 (x² − 2x + 2)² − 3² = 0 And yes, we have a difference of two squares at the left hand side so we get (x² − 2x + 2 − 3)(x² − 2x + 2 + 3) = 0 (x² − 2x − 1)(x² − 2x + 5) = 0 x² − 2x − 1 = 0 ∨ x² − 2x + 5 = 0 (x − 1)² = 2 ∨ (x − 1)² = −4 x = 1 + √2 ∨ x = 1 − √2 ∨ x = 1 + 2i ∨ x = 1 − 2i and we are done.
@maximusmeridius2060
@maximusmeridius2060 7 ай бұрын
Whoever came up with this substitution is a genius
@gdmathguy
@gdmathguy 8 ай бұрын
That looks like such a satisfying solution. I love this problem
@SyberMath
@SyberMath 8 ай бұрын
Thanks!
@mcwulf25
@mcwulf25 8 ай бұрын
Good use of substitutions 👍
@allanmarder456
@allanmarder456 8 ай бұрын
If you assume the quartic x^4 - 4x^3 +8x^2 -8x -5 can be factored as 2 quadratics with integer coefficients it's not that bad. (x^2 +bx +c)(x^2 +dx +e) gives the following coefficients b+d=-4 c +e +bd =8 ce =-5. Fortunately 5 is prime so if you assume integer coefficients you have (c,e) = 1,-5 -5,1 -1,5 5,-1 and you have to check 4 cases. It turned out -1,5 was a good choice. That gave the system b+d =-4 4 +bd =8 or b+d =-4 and bd=4. b=-2 d=-2 works and also c=-1 and e=5. The coefficient for x is be +cd = -8 and (5)(-2) + (-1)(-2) =-8 so (x^4 - 4x^3 + 8x^2 - 8x -5) factors as (x^2 - 2x -1)(x^2 - 2x + 5). Now just apply the quadratic formula.
@farhansadik5423
@farhansadik5423 8 ай бұрын
nice! I loved this one! though, is it safe to not assign a coefficient to x^4 in this case? I mean i can see that the coefficient will be 1, so it's not needed, but does that ever cause problems?
@allanmarder456
@allanmarder456 8 ай бұрын
@@farhansadik5423 Thanks for the comment. I've never experienced a problem like that. But I always check afterward to make sure the factors check out.
@farhansadik5423
@farhansadik5423 8 ай бұрын
@@allanmarder456 yeah, that's what I think should happen, i'm still learning. Thanks for the knowledge!
@goldfing5898
@goldfing5898 8 ай бұрын
x^5 + (2 - x)^5 = 82 x^5 + ((-(x - 2))^5 = 82 x^5 - (x - 2)^5 = 82 x^5 = (x - 2)^5 + 82 In such cases, it is often advantegeous to substitute the average of the two terms: t = x - 1 So we can replace x = t + 1 x - 2 = t - 1 We now get the equation (t + 1)^5 = (t - 1)^5 + 82 t^5 + 5t^4 + 10t^3 + 10t^2 + 5t + 1 = = t^5 - 5t^4 + 10t^3 - 10t^2 + 5t - 1 + 82 We subtract t^5 and 10t^3 and 5t: 5t^4 + 10t^2 + 1 = - 5t^4 - 10t^2 + 81 10t^4 + 20t^2 - 80 = 0 t^4 + 2t^2 - 8 = 0 A very was to solve biquadeatic: (t^2 + 4)(t^2 - 2) = 0 Either t^2 = -4 t = +- 2i x = 1 +- 2i or t^2 = 2 t = +- sqrt(2) x = 1 +- sqrt(2) Two real and two complex solutions.
@WahranRai
@WahranRai 8 ай бұрын
If y is a solution then 2- y is also a solution (equation doesn't change if replace x by 2-x )
@gametimewitharyan6665
@gametimewitharyan6665 8 ай бұрын
y^5 + (2-y)^5 does not equal (2-y)^5 + (-y)^5 Because y^5 does not equal (-y)^5
@filipeoliveira7001
@filipeoliveira7001 8 ай бұрын
@@gametimewitharyan6665but (2-(2-y)) = (2-2+y) = y, so he is correct
@gametimewitharyan6665
@gametimewitharyan6665 8 ай бұрын
@@filipeoliveira7001 Oh my bad, thanks
@filipeoliveira7001
@filipeoliveira7001 7 ай бұрын
@@gametimewitharyan6665 np homie!
@hktundra
@hktundra 8 ай бұрын
if you are looking for roots in complex numbers, then there must be exactly five roots for the original equation, if counted with their multiplicities
@MrGeorge1896
@MrGeorge1896 8 ай бұрын
So you think x⁴ - x⁴ + x = 1 has more solutions than just x = 1?
@artandata
@artandata 8 ай бұрын
I've got a question: at time= 8:50 isn't it x²-2x +1 = 0 ? thanks!
@peterburkhard8700
@peterburkhard8700 3 ай бұрын
Set u=1-x. All odd powers of u are eliminated. Bi quadratic in u. 4 steps to solution
@scottleung9587
@scottleung9587 8 ай бұрын
Cool!
@jcfgykjtdk
@jcfgykjtdk 8 ай бұрын
z=x-1
@dwaindean1730
@dwaindean1730 6 ай бұрын
🤪 "promosm"
How To Evaluate A Cubic Algebraic Expression
6:46
SyberMath
Рет қаралды 2,7 М.
I Solved A Nice Polynomial Equation in Two Ways
10:45
SyberMath
Рет қаралды 5 М.
Муж внезапно вернулся домой @Oscar_elteacher
00:43
История одного вокалиста
Рет қаралды 5 МЛН
Кто круче, как думаешь?
00:44
МЯТНАЯ ФАНТА
Рет қаралды 5 МЛН
I Solved A Polynomial Equation | Math Olympiads
9:54
SyberMath
Рет қаралды 4,1 М.
Solving A Special Quartic | x^4 - 12x =17
8:41
SyberMath
Рет қаралды 3,2 М.
A Nice Polynomial Equation from Croatia 🇭🇷
9:27
SyberMath
Рет қаралды 12 М.
Which number is larger? - Math puzzle
11:17
Math Queen
Рет қаралды 14 М.
How To Calculate Any Square Root
13:33
MindYourDecisions
Рет қаралды 100 М.
A Nice Infinite Sum With Factorials
11:19
SyberMath
Рет қаралды 4,6 М.
A Very Nice Math Olympiad Problem | Solve for x? | Algebra Equation
16:33
Spencer's Academy
Рет қаралды 9 М.
so you want a VERY HARD math question?!
13:51
blackpenredpen
Рет қаралды 1 МЛН
Don't panic. There are two basic strategies to solve questions like this
8:02
Comparing Two Irrational Numbers
12:12
SyberMath
Рет қаралды 2,1 М.
Муж внезапно вернулся домой @Oscar_elteacher
00:43
История одного вокалиста
Рет қаралды 5 МЛН