Librosa Audio and Music Signal Analysis in Python | SciPy 2015 | Brian McFee

  Рет қаралды 76,851

Enthought

Enthought

Күн бұрын

Пікірлер
@alix6028
@alix6028 5 жыл бұрын
This is insane, this is literally what we need for our bachelor's thesis. Thank you for your work!
@MaximeGOALEC
@MaximeGOALEC Жыл бұрын
00:00 Brian se présente et parle de son travail en recherche en musique et apprentissage automatique. Il parle du domaine de récupération d'informations musicales. 00:27 Brian explique le domaine de musique information retrieval (récupération d'informations musicales) et ses intérêts en analyse de contenu audio lié à la musique. 01:10 Il énumère les problèmes intéressants liés à l'analyse de contenu audio, tels que la reconnaissance de notes, l'analyse structurelle, la prédiction de tags musicaux, etc. 02:02 Brian présente son module Python, "librosa", qui permet d'analyser les signaux audio, en se concentrant sur la première étape de son pipeline : extraire des caractéristiques à partir des signaux audio. 04:11 Il expose les objectifs de conception de la bibliothèque "librosa" : facilité d'utilisation pour les spécialistes de récupération d'informations musicales, flexibilité, cohérence et contrôle de la qualité du code. 05:11 Brian explique qu'il s'agit d'une bibliothèque purement Python, qui offre des fonctionnalités telles que le chargement audio, la représentation en spectrogramme, le traitement des effets sonores, la détection d'événements, etc. 07:15 Il montre des exemples de chargement audio, de représentation en forme d'onde et de spectrogramme. Il discute également de la transformation constante Q pour représenter la fréquence logarithmiquement. 08:44 Brian affiche des exemples de représentations spectrales supplémentaires, telles que le chroma, les MFCC, etc. 09:46 Il présente l'utilisation de la bibliothèque pour effectuer des séparations de source audio, comme la séparation harmonique et percussive. 11:55 Brian démontre la détection d'événements de début de note et le suivi des battements dans l'audio. 14:21 Il explique comment la bibliothèque gère les structures temporelles répétitives et comment il utilise les caractéristiques synchronisées pour créer un graphe de récurrence. 15:18 Brian conclut son discours en mentionnant que la bibliothèque "librosa" est toujours en développement actif, avec une documentation complète et de nombreux contributeurs.
@codemonkey9830
@codemonkey9830 7 жыл бұрын
buddy at 16:03 on the cartoon and meme machine
@celsoch
@celsoch 7 жыл бұрын
Awesome library, extremely usefull!
@sanctipaprichio
@sanctipaprichio 5 жыл бұрын
if you dont have display method use ' import librosa.display '
@todddelozier8172
@todddelozier8172 4 жыл бұрын
Just what I needed!!!
@egs64
@egs64 3 жыл бұрын
That cool minute of music is Vibe Ace, Kevin Macleod
@noahballou6350
@noahballou6350 4 жыл бұрын
I wish this could have been an hour long presentation. I am a complete beginner in Python and in DSP and I have had a very hard time understanding exactly what musical characteristic most of the sub-modules are analyzing. Beat tracker is fairly straightforward, but man if I could just have a nice run through of everything there is to offer without having to scour the linked research papers they provided on their Github!
@skabbit
@skabbit 5 жыл бұрын
Thanks, i dreamed about librosa for onsets!
@yiliangjiang8301
@yiliangjiang8301 7 жыл бұрын
I really appreciate your work, thanks!
@NiftyBilla
@NiftyBilla 6 жыл бұрын
if i want to plot real time recognized audio from mic in jupyter notebook then what is procedure? can librosa plot wave form which is recognized by microphone in real time experiments?
@Sutirtha
@Sutirtha 5 жыл бұрын
let me know if you find a solution for this :)
@ChoirinNisa13
@ChoirinNisa13 5 жыл бұрын
I have the same question with you. Could anyone help to solve this?
@michaelm6928
@michaelm6928 5 жыл бұрын
Following too
@noahballou6350
@noahballou6350 5 жыл бұрын
You will probably have to find a way to convert the signal into a recognizable codec for the script to read, which will take some time to Otherwise you’d have to change the entire code to recognize wav format which is the type for raw uncompressed audio, and is a huge amount of data as a result.
@durgaganesh423
@durgaganesh423 3 жыл бұрын
Hi how to find glitches from wav file
@emptiness116
@emptiness116 2 жыл бұрын
the dude in the back is literally looking at ifunny.
@TheMarcoJacobs
@TheMarcoJacobs 6 жыл бұрын
Hi nice work, is there a way to retrive some kind of information about rhytm analysis (for example syncopated rhythm ecc)? tnx in advance ;)
@rishabhvarshney7811
@rishabhvarshney7811 5 жыл бұрын
can i do feature extraction from any wav file with this library ?? like intensity,speakrate,engaging tone ?
@dankwarmouse6248
@dankwarmouse6248 5 жыл бұрын
Do you mean in regards to speech? Because if so, most of those are way higher level features than what librosa offers, and (except perhaps speak rate) it's debatable whether you'd really call them features of the audio. I don't doubt there is information in the audio that could be useful in determining the tone or intensity of a person's speech, but I could imagine most of the more obvious ones being subject to an infinite variety of errors producing incorrect conclusions. As an example, if you tried to use volume as an indication of tone, you might interpret someone standing close to the microphone as angrier than someone far. And that's not even getting into different languages or cultures or even social situations, where two strangers might talk to each other with a very friendly tone to be polite, while two friends might talk to each other with a much more neutral tone since they don't feel they need to. Ends up getting really complicated really fast. But I don't know what the research looks like right now, perhaps these are surprisingly easy with the magic of neural networks or something :)
@ekayesorko
@ekayesorko 4 жыл бұрын
good job, man.
@captainwankbeard
@captainwankbeard 5 жыл бұрын
9:29 yikes!
@rezaulkarimmamun6211
@rezaulkarimmamun6211 5 жыл бұрын
How to compare two audio signal similarity in python?
@spiessrobbin6566
@spiessrobbin6566 3 жыл бұрын
I also want to know this!
@notreal4858
@notreal4858 Жыл бұрын
lmao the guy in the back, bottom left looking at memes the whole time
@suhanikashyap839
@suhanikashyap839 2 жыл бұрын
Very helpful! Thank you
@boxerlobsters
@boxerlobsters 4 жыл бұрын
most commands are not working
@adailtonjn
@adailtonjn 7 жыл бұрын
Really awesome!!
@davidanalyst671
@davidanalyst671 5 жыл бұрын
the volume is half as loud as it should be
@dadsquadmusic
@dadsquadmusic 8 жыл бұрын
Amazing thank you
@emily.webber
@emily.webber 6 жыл бұрын
Nice tool!
@noahballou6350
@noahballou6350 4 жыл бұрын
I wish this could have been an hour long presentation. I am a complete beginner in Python and in DSP and I have had a very hard time understanding exactly what musical characteristic most of the sub-modules are analyzing. Beat tracker is fairly straightforward, but man if I could just have a nice run through of everything there is to offer without having to scour the linked research papers they provided on their Github!
Basic Sound Processing in Python | SciPy 2015 | Allen Downey
18:59
Denoising Data with FFT [Python]
10:03
Steve Brunton
Рет қаралды 178 М.
БОЙКАЛАР| bayGUYS | 27 шығарылым
28:49
bayGUYS
Рет қаралды 1,1 МЛН
Anna Wszeborowska - Processing music on the fly with Python
24:27
Epic Python Videos
Рет қаралды 68 М.
Music Synthesis in Python
26:46
PyGotham 2017
Рет қаралды 57 М.
Audio Data Processing in Python
19:52
Rob Mulla
Рет қаралды 174 М.
Drop the DAW - Sound Design in Python - Isaac Roberts - ADC20
45:39
ADC - Audio Developer Conference
Рет қаралды 26 М.
Lecture 1: Course Overview + The Shell (2020)
48:17
Missing Semester
Рет қаралды 765 М.
Topic Modeling with Python
50:14
PyTexas
Рет қаралды 67 М.
Audio Classification with Machine Learning (EuroPython 2019)
44:32