Lie groups: Positive characteristic is weird

  Рет қаралды 4,024

Richard E Borcherds

Richard E Borcherds

Күн бұрын

Пікірлер: 14
@lukasjuhrich503
@lukasjuhrich503 4 жыл бұрын
„Positive characteristic is weird“ sums up every encounter with positive characteristic I've had so far.
@vladkovalchuk8299
@vladkovalchuk8299 4 жыл бұрын
In what sense are projective varieties "almost opposite" of affine varieties? (6:02)
@AsvinGothandaraman
@AsvinGothandaraman 4 жыл бұрын
Lots of reasons, here's one: it's really easy to map to projective space and pretty hard to map put of it. Conversely, it's really easy to map out of affine space and really hard to map to it. For instance, all maps from projective varieties to affine varieties are constant
@AsvinGothandaraman
@AsvinGothandaraman 4 жыл бұрын
Here's another related reason: affine things are really local, for instance all higher sheaf cohomology vanishes. Projective things are very global - higher sheaf cohomology is almost always very non trivial.
@vladkovalchuk8299
@vladkovalchuk8299 4 жыл бұрын
@@AsvinGothandaraman Thanks for your answer! Do you know of any more general result exemplifying your intuition? E.g. something along the lines(within an appropriate category) of "of all abstract varieties, those that have most morphisms out of them are affine, and dually, those that have most morphisms into them are projective"? Algebraic geometry has never been my strong suit, feel free to ignore the question if it is greatly uninformed.
@AsvinGothandaraman
@AsvinGothandaraman 4 жыл бұрын
@@vladkovalchuk8299 Well, I am not sure I can pin down something so exactly but it's not hard to classify maps to either affine space or projective space. In the first case, it's given by find a map from the corresponding ring which is just picking some number of global sections. In the second case, you are allowed the freedom of picking a lime bundle and then some global sections. So clearly there is more freedom in the projective case.
@AsvinGothandaraman
@AsvinGothandaraman 4 жыл бұрын
Here's another sense in which affine spaces are small: under niceness assumptions, the complement of any open affine subvariety is always codimension one (that is, pretty large!).
@anthonymurphy5689
@anthonymurphy5689 4 жыл бұрын
18:50 - small typo I think - RHS should have powers m+1 and n+1 in the calculation of [Lm,Ln]. following line should have m+n+1 in the power of x. Final result is however correct.
@samhughes8017
@samhughes8017 4 жыл бұрын
If you were willing to do it I would love to see a lecture series on algebraic groups
@migarsormrapophis2755
@migarsormrapophis2755 4 жыл бұрын
yeeee
@fischergriess6321
@fischergriess6321 4 жыл бұрын
Yeeeee
@atomiccompiler9495
@atomiccompiler9495 4 жыл бұрын
yEEEEE
@ZetaCarinae
@ZetaCarinae 4 жыл бұрын
The best kind of click-bait.
Lie groups: Bianchi classification
24:45
Richard E Borcherds
Рет қаралды 4,1 М.
Lie groups: Lie algebras
30:53
Richard E Borcherds
Рет қаралды 24 М.
So Cute 🥰 who is better?
00:15
dednahype
Рет қаралды 19 МЛН
Chain Game Strong ⛓️
00:21
Anwar Jibawi
Рет қаралды 41 МЛН
We Attempted The Impossible 😱
00:54
Topper Guild
Рет қаралды 56 МЛН
Mordell-Weil theorem
21:14
Richard E Borcherds
Рет қаралды 10 М.
Lie groups: Poincare-Birkhoff-Witt theorem
30:03
Richard E Borcherds
Рет қаралды 7 М.
Lie groups: Lie groups and Lie algebras
36:29
Richard E Borcherds
Рет қаралды 14 М.
What is Group Theory? - Group Theory Ep. 1
31:13
Nemean
Рет қаралды 1,1 МЛН
Lie groups: Baker Campbell Hausdorff formula
25:55
Richard E Borcherds
Рет қаралды 8 М.
Joan Solà - Lie theory for the Roboticist
37:17
Noémie Jaquier
Рет қаралды 34 М.
Lie groups: Haar measure
24:16
Richard E Borcherds
Рет қаралды 8 М.
the cross product is a Lie (algebra)
14:14
Michael Penn
Рет қаралды 40 М.
So Cute 🥰 who is better?
00:15
dednahype
Рет қаралды 19 МЛН