Linear Algebra 12a: Applications Series - Polynomial Interpolation

  Рет қаралды 10,392

MathTheBeautiful

MathTheBeautiful

Күн бұрын

Пікірлер: 23
@MathTheBeautiful
@MathTheBeautiful 4 жыл бұрын
Go to LEM.MA/LA for videos, exercises, and to ask us questions directly.
@Steve-3P0
@Steve-3P0 6 жыл бұрын
OK. This is was VERY good about WHY we want to use interpolation and linear algebra. THANK YOU! I kept asking my Linear Algebra teacher 20 years ago "Why do I want to learn this?" His answer was always "We learn math for spiritual growth".
@knivesoutcatchdamouse2137
@knivesoutcatchdamouse2137 4 жыл бұрын
To be fair, your professor was partially right!
@shofibahalwan402
@shofibahalwan402 6 жыл бұрын
Okay.. This is very good. Thank you!! Subbed and liked...
@КлинтИствуд-ъ3и
@КлинтИствуд-ъ3и 7 жыл бұрын
Amazing series!!
@oliverhulesch3922
@oliverhulesch3922 7 жыл бұрын
always good for offering insight
@deantodd6845
@deantodd6845 3 жыл бұрын
You just blessed me.
@mybankofamerica
@mybankofamerica 9 жыл бұрын
BTW I your videos are really good. I really appreciate these.
@dishankdazzler
@dishankdazzler Жыл бұрын
How is ax+bx^2+cx^3+dx^4 is linear function? Isn't it a polynomial? I get that you say it's linear in a,b,c,d. But that's what not linear refers to in general? being Linear means in the changing variable which x here. a,b,c,d are just coefficients here.
@MathTheBeautiful
@MathTheBeautiful Жыл бұрын
You're right, it's not a linear function. But that's the beauty of it that many nonlinear things have linear elements in them.
@loremazza5191
@loremazza5191 5 жыл бұрын
Given n points, is there always a polynomial that passes through all of them?
@denisgiard130
@denisgiard130 4 жыл бұрын
very good video ; but just a little detail : the portrait shown cannot possibly be Vandermonde's. He lived in the second half of the 18th century ; and the dress and haircut of the man on the portrait are obviously around 1600.
@mybankofamerica
@mybankofamerica 9 жыл бұрын
Hi, I was wondering what software you use when you are inserting the matrix and picture
@MathTheBeautiful
@MathTheBeautiful 9 жыл бұрын
Bill Johnson Scientific Workplace
@vineetmukim2365
@vineetmukim2365 6 жыл бұрын
We can say A is invertible AFTER looking at the columns, how can you say it beforehand? Am I missing something?
@MathTheBeautiful
@MathTheBeautiful 6 жыл бұрын
Which point in the video are you referring to?
@vineetmukim2365
@vineetmukim2365 6 жыл бұрын
time 06:33
@MathTheBeautiful
@MathTheBeautiful 6 жыл бұрын
Yes, not known at that point. I should have said "will have proven to be invertible".
@vineetmukim2365
@vineetmukim2365 6 жыл бұрын
Thanks a lot for replying, Sir.
@eduardoschiavon5652
@eduardoschiavon5652 4 жыл бұрын
I guess it follows from the theorem that there exists a unique polynomial of degree less than or equal to n that interpolates a given function in n+1 data points.
@D3r3k2323
@D3r3k2323 6 жыл бұрын
I don't understand why this is linear algebra, since the polynomial is not linear.
@MathTheBeautiful
@MathTheBeautiful 6 жыл бұрын
Hi Derek, That's actually the whole point! Polynomials are not linear but we are combining them in linear combinations. Sines and cosines are not linear other, but Fourier series are pure linear algebra! I hope this is helpful.
@debendragurung3033
@debendragurung3033 6 жыл бұрын
You are correct on the fact that the equation of polynomials of variate y on variate x is not linear. But thats bit of a pre college definition of calling line as linear, polynomial of degree quadratic 2 and so on.. But the equation of straight y =ax+b is just some equation thats also functions. The axioms of linear Mapping are F(au) = aF(u) F(u+v) = F(u) + F(v) if you consider u and v as variate x, even the linear function y=ax+b doesnt obey these axioms of Linear Mapping. Well thats where I once got stucked. But if viewed from other perspective of function space, if two functions of any degree continous on open interval of x, f(x) +g(x) = (f+g)(x) (af(x)) = a(f(x) for constant a f(x) and g(x) can be any functions polynomials or nonpolynomials like y=e^x , y= 1/x etc . As long as they are functions they obey axioms of linear Mapping. This is the foundation for Linear Algebra. I dont know how Linear descended, but I believe its from how we solve system of linear equations like intersection of two lines, then intersection of three planes etc. It basically came from linear equations, to linear functions then to Linear Mapping.
Linear Algebra 12b: Applications Series - Non-Polynomial Interpolation
5:06
Wait for it 😂
00:19
ILYA BORZOV
Рет қаралды 9 МЛН
Бенчик, пора купаться! 🛁 #бенчик #арти #симбочка
00:34
Симбочка Пимпочка
Рет қаралды 4 МЛН
Sigma baby, you've conquered soap! 😲😮‍💨 LeoNata family #shorts
00:37
Linear Algebra 13e: The LU Decomposition
16:55
MathTheBeautiful
Рет қаралды 72 М.
Linear Algebra 8b: Our First Linear System - A Thorough Discussion
24:18
Eigenvectors and eigenvalues | Chapter 14, Essence of linear algebra
17:16
The Art of Linear Programming
18:56
Tom S
Рет қаралды 681 М.
Linear Algebra 9c-: Review - Column Space Versus Null Space
14:09
MathTheBeautiful
Рет қаралды 10 М.
Linear Algebra 13a: Introduction to Elementary Matrices
17:09
MathTheBeautiful
Рет қаралды 10 М.
Linear Algebra 9d: First Gaussian Elimination Example
15:33
MathTheBeautiful
Рет қаралды 6 М.
Linear Algebra - Math for Machine Learning
41:23
Weights & Biases
Рет қаралды 113 М.
Extending the Harmonic Numbers to the Reals
15:17
Lines That Connect
Рет қаралды 326 М.
Wait for it 😂
00:19
ILYA BORZOV
Рет қаралды 9 МЛН