How did u get sqrt(45) for the last column when doing orthonormal???
@denny83602 жыл бұрын
Clean and easy to understand. Thanks.
@ayoubmounadi2142 Жыл бұрын
How do you get that span
@emathematics34123 жыл бұрын
thanksss sirrrrr..its really helpful for my assignment
@ayoubmounadi2142 Жыл бұрын
How do we do that row reduction?
@affaqahmed Жыл бұрын
How the √45 come in third eigen vector
@ramyokash3064 жыл бұрын
How do we say the columns are orthogonal or not?
@arnoldyim47654 жыл бұрын
You can check if the columns are orthogonal or not by taking their dot product. If the dot product of two vectors is 0, then the vectors or orthogonal.
@abnerandreymartinezzamudio33662 жыл бұрын
If they come from the same eigenvalue, the columns will most likely not be orthogonal, so assume they aren't.
@sadece_prens Жыл бұрын
well, why did we multiply the first eigenvector by 2? I couldnt get it. is it necessary?
@affaqahmed Жыл бұрын
Why the PAP^1 is not equal to A
@chriswil82522 жыл бұрын
How did you know the order of eigenvalues in the diagonal matrix?
@a_41_pruthvirajkm852 жыл бұрын
You can place eigen values in any order but the corresponding eigenvector must be that column of P itself. eg: if you place an eigen value at a11 then eigen vector that we obtained for that eigen value should be considered as the first column of P
@thenewdimension98322 жыл бұрын
Soon u should be on the top 🤗🤗🤗 Keep going
@ashutosharora21962 жыл бұрын
If we have distinct eigenvalues but matrix is not symmetric then also can we orthogonally diagonalize a matrix?
@abnerandreymartinezzamudio33662 жыл бұрын
Yes, if you have distinct eigenvalues, you will have distinct eigenvectors, and therefore the matrix is already diagonalizable
@allensteephan96513 жыл бұрын
Sir can u pls explain how did u calculate the eigenvectors or span when lambda= -3
@ramyokash3064 жыл бұрын
What is the difference between diagonalising a matrix and orthogonally diagonalising a matrix?? Is it the same?
@arnoldyim47654 жыл бұрын
When we normally diagonalize a matrix. We write it in the for PDP^(-1). Where the columns of P are the eigenvectors associated with the eigenvalues of the diagonal matrix D. There is no guarantee that the columns of P are orthogonal. When we orthogonally diagonalize a matrix, we make sure that the columns are orthogonal (using the Gram-Schmidt process).
@thegoofster46864 жыл бұрын
@@arnoldyim4765 so you don't need to make the vectors of P orthonormal then?just make them an orthogonal set?
@arnoldyim47654 жыл бұрын
@@thegoofster4686 That's right, you only need an orthogonal set, but having an orthonormal set works too.
@SADDAMHUSSAIN-mw3cv3 жыл бұрын
Very thank you respected sir...
@thenewdimension98322 жыл бұрын
Wow .....I am lucky to have this 🥰🥰🥰🥰🥰🥰
@abnerandreymartinezzamudio33662 жыл бұрын
You should call this video: half a college CS semester in 10 minutes.
@gichuki3028 күн бұрын
Here in 2024 I think we should have 3 eigen values