fit_transform is used on training data to learn parameters and transform it, while transform is used on new or unseen data to apply previously learned transformations without re-learning the parameters.
@ParthPatel-db4tk Жыл бұрын
fit_transform() is used on the training data to learn the scaling or transformation parameters and then applies the same transformation to the training data. transform() is used on new data (e.g. test data) to apply the same transformation that was learned on the training data.
@ritikkohad5045 Жыл бұрын
Thanks brother
@ayushpant8290 Жыл бұрын
thanks bro
@kartiknampalliwar86037 ай бұрын
i am unable to do first step i.e load_ boston is showing error can you please help me
@dhmahbub7 ай бұрын
@@kartiknampalliwar8603 that data is not available in the new version. You can alternatively use "fetch_california_housing" and load it. Probably that is the similar sort of data.
@hiteshkotian60236 ай бұрын
@@kartiknampalliwar8603 load_boston is no longer available use some other data like load_diabetes or something
@ujjvalbhardwaj9061Ай бұрын
00:01 Practical implementation of linear regression 02:32 Explaining features and target in linear regression 05:22 Preparing data for linear regression 08:12 Understanding data normalization and standardization 11:00 Implementing linear regression using steps 13:08 Implementation of cross-validation for linear regression 15:47 Using negative mean squared error for model optimization 18:21 Verification is crucial for accurate predictions. 20:43 Understanding the practical implementation of linear regression and its key steps 23:11 Linear regression calculates the average change in one variable based on another
@PRITAMHALDER-f7yАй бұрын
scaler.transform(X_test) used to calculate mean and stander deviation on test data to be used future scaling .
@meetsaurabhtiwari8 ай бұрын
Sir , your effort is really wonderfull and is inspiration. please make a separate playlist for EDA and feature engineering , lakhs of aspirants are wait , please make it on serious note.
@anujgupta3285 ай бұрын
Gradient decent iss implementation mein kaise implement kaise hua?? Agar back end mein hua toh alpha value kaha diya?? @krish please explain
@luckythecutepie Жыл бұрын
fit transform is used in train data set to predict the value(linear regression) test data set just to se our accuracy with the model.
@HasnainMazharRizvi Жыл бұрын
playlist ke hisab se video dalo sir, theory aur practical implementation ke video mein bahot fark hai , much samjh nhi aya, r2 score, cross validation , xtrain ye sab kya hai theory mein to that he nhi ye sab.
@Techwithgalvan8 ай бұрын
yoo bhai
@SarthakParashar-uz9tbАй бұрын
same problem bhai theory toh smhj aai pr implementation nahi
@code_with_somesh0918 күн бұрын
`load_boston` has been removed from scikit-learn since version 1.2. The Boston housing prices dataset has an ethical problem: as investigated in [1], the authors of this dataset engineered a non-invertible variable "B" assuming that racial self-segregation had a positive impact on house prices [2]. Furthermore the goal of the research that led to the creation of this dataset was to study the impact of air quality but it did not give adequate demonstration of the validity of this assumption.
@talhagalaria5712 жыл бұрын
fit transform and transform = we want to keep as a surprise is no longer unknown to our model and we will not get a good estimate of how our model is performing on the test (unseen) data which is the ultimate goal of building a model using machine learning algorithm.
@patelkdhawal2 жыл бұрын
Can you elaborate more. Please
@avinashmirchandani87312 жыл бұрын
Please more videos on machine learning also practical video more Thankyou
@Aman-yu4re5 ай бұрын
Do I need to know sklearn before starting this playlist ?
@neeshantn97422 жыл бұрын
Great video sir...just one concern...Why we are not checking VIF?
@pratishzaware14302 жыл бұрын
Nicely taught the algorithm..Thanks for making learning simple
@Gattu_g2 жыл бұрын
Sir you explain soo good please continue making videos in hindi
@faheemsyed94817 ай бұрын
great job sir jee
@rohannagar304125 күн бұрын
sir i can't understand anything,should i learn nummpy and pandas for this
@JagFi Жыл бұрын
Boston housing dataset has been removed from scikit-learn. Is there any way to load it as a bunch data??
@ausking308110 ай бұрын
import pandas as pd import numpy as np data_url = "lib.stat.cmu.edu/datasets/boston" raw_df = pd.read_csv(data_url, sep="\s+", skiprows=22, header=None) data = np.hstack([raw_df.values[::2, :], raw_df.values[1::2, :2]]) target = raw_df.values[1::2, 2] or install version 1.0.1 pip install scikit-learn==1.0.1
@xyz35886 ай бұрын
sir sklearn na dataset remove kar deya ha. dataset fetch nahi ho raha ha
@jaydodhiawala4117 Жыл бұрын
sklearn removed load_boston which dataset i can use to follow along?
@krishnaikhindi Жыл бұрын
Fetchcaliforniadataset
@dnswm95 Жыл бұрын
@@krishnaikhindican we use fetch_california_housing ??
@anilmurmu66752 жыл бұрын
What value of MSE , RMSE, R-square should be taken into consideration to come to conclusion that model build is accurate one? Is there any range of value for MSE, RMSE and R-square ?
@aftab6417 Жыл бұрын
R2 to be gerater than .70 that is 70%
@sauravsahay88036 ай бұрын
How is it that you are predicting on x_test but calling your y_test as truth value?
@manchalamani9475 Жыл бұрын
Sir this can be explain in English language some what difficult to understand Hindi
@TuneTube3124 ай бұрын
Thank you sir 🙏
@roshanbhattad44932 ай бұрын
boston dataset is removed from sklearn
@debasmitabasu210613 күн бұрын
you can go for california housing dataset for same work linear regression. it works.
@kishormagar31602 жыл бұрын
Very good Sir
@yadnyeshkhotre2001 Жыл бұрын
boston dataset is been reomved from the kcikit liberary
@azharafridi9619 Жыл бұрын
which one do you use right now. facing the same problem bro
@aishwaryajadhav8736 Жыл бұрын
same issue @@azharafridi9619
@datasciencegyan51452 жыл бұрын
Krish ap kon sa video software use kerto ho recording k liye
@satyamghule147 Жыл бұрын
i use the same model on 'fetch_california_housing' dataset and the mse i got is 0.5.
@shivanshmishra8395 Жыл бұрын
Me too.. and the score is 0.34
@bhuvansagar329411 ай бұрын
same, and as mentioned by the other person, my score is 0.33
@sumitsamanta7416Ай бұрын
idid not got the same graph in the end my varinence is more then (-10)--10 wht to do help
@yamrajoli38348 ай бұрын
I am seeing you videos just to similary apply another multivarite problem but when I got the displot(with kind=kde) it came similar but of the rang eof the 1e^9 so How can decrease the error should I use the tunning or what ?
@Prachi_Gupta_zeal Жыл бұрын
what is random state= 42 in that train test split command?
@Sachin-xj1oq5 ай бұрын
Can anyone please explain displot discussed in this video?
@visshalgupta Жыл бұрын
Sir i didnt able to understand what is y the dependent variable . I mean which column is gettimg predicted ?
@jatinjoshi1830 Жыл бұрын
Thank You
@shashankmokashi14062 жыл бұрын
Good video sir.
@BEEAnkitgupta11 ай бұрын
sir if my accuracy_score is 0.85 then my predication model is good or bad?
@nileshkshatriya58272 жыл бұрын
Please keep uploading videos in hindi
@Gangstersongs1256 ай бұрын
Sir in this where us accuracy
@brahmadevrai43692 жыл бұрын
Sir when new batch start for data science?
@NavyaTrilokD5 ай бұрын
But what are we predicting here? Can someone explain please..what does the values in "reg_pred" tell us? what is the difference between values in target features array and "reg_pred" values?
@NavyaTrilokD5 ай бұрын
so we are predicting the output feature house pricing...for the independent features in x_test, dependent feature or actual values are in y_test. After applying linear regression, predicted values are in reg_pred. In linear regression we find the difference between actual values and predicted values, that is the error. MSE is that error here.
@swapnilkulat5990 Жыл бұрын
The Boston datasathas been removed from sklearn....
@vikasvachheta7135 Жыл бұрын
*** please create EDA and Feature engineering playlist in HINDI ***
@alirathore68182 жыл бұрын
why are we using 'neg_mean_squared_error' can u please share link linear regression loss function video ?
@sonalikamble59294 ай бұрын
Great thank you
@Yash_Patil. Жыл бұрын
bcoz we evaluate our model on test data set
@ajaykushwaha-je6mw2 жыл бұрын
Sir please l1 and L2 k liye bhi video banaiye
@nileshnaik31112 жыл бұрын
nice video sir
@rakibulislamrabbi3737 ай бұрын
Sir the boston dataset is no more available in the scikit-learn datasets also can't load the boston dataset in juyter notebook can U please provide any solution for that?
@innocentgamer86707 ай бұрын
you can use the alternate dataset like california housing , or you can search and save the boston dataset , and use pd.read_csv() method to use that dataset
@AbhijeetDewangan-gr9sj7 ай бұрын
please use " from sklearn.datasets import fetch_california_housing " alternative of Boston
@KushagraBhardwaj-f5j5 ай бұрын
where is the theory playlist? can someone please attach the link in the reply to this comment
@MnB_music2 жыл бұрын
Simply amazing ❤
@sowmyavvasu84 Жыл бұрын
Sir i have build the model in linear regression and performance of evaluation metrics are also done. Now additional I want to add one more new row(instance) and find the performance of it how to do can you guide me pl. How to check the performance particularly that single row.
@filmybeats4827 Жыл бұрын
Bro I couldn't understand this to that level how can I understand these concepts as sir is directly implemented it so
@moghalkarishma237811 ай бұрын
here linear regression doing but why taken independent features more than 1 feature can anybody tell me
@abhinavbm3338 Жыл бұрын
what is score?
@AmitSharma-oh5uw8 ай бұрын
sir ap dataset bhi dal diya kro. load_boston to ho ni rha hai hmara. kaise kre ab
@niharikakhanna35858 ай бұрын
same problem, kuch solution mila?
@AmitSharma-oh5uw8 ай бұрын
@kakhanna3585 hi niharika are you a data science student. pehle mene socha inke 38 videos hi hai machine learning ke. and me bhut jldi complete kr lunga. but me 2 video se age hi bdha hi ni abhi tk. ye beginers jaise ni pdha rhe hai. and mujhe ek ek chiz likhna pd rha hai, ki sir kya bol rhe hai video me. and wo atleast definations bhi likhwate to smjne me easy hota. it's difficult to understand. kya apko koi aur playlist pta hai. jisse jo machine learning ke liye ho.
@piyushff32583 ай бұрын
use fetch_california_housing class alternative of boston
@harshsrivastava1662 Жыл бұрын
kind='kde' not showing that graph
@paraguchbagle64136 ай бұрын
bouncer ho gya ye video
@ajaykushwaha42332 жыл бұрын
How to know model is overfitted or stable model.
@entertainmenthub77002 жыл бұрын
if it perfectly fits to the traning data in simple meanings if it remember the data instead of learning it overfits
@tusharsalunkhe7916 Жыл бұрын
Why Y_train is not standardized? Please answer
@satyamghule147 Жыл бұрын
Standardization is typically applied to the feature variables (X_train) rather than the target variable (Y_train) in machine learning.
@lakshyajain7435 Жыл бұрын
Kuch samajh nahi aa raha...
@dheerajgupta3805 Жыл бұрын
subscribed
@B.D.M19998 ай бұрын
load boston has been removed
@AbhijeetDewangan-gr9sj7 ай бұрын
please use " from sklearn.datasets import fetch_california_housing " alternative of Boston
@MehtabAfzal-i3t7 ай бұрын
Bhai fetch wali BHI Nahi Chal rahi
@toufique33904 ай бұрын
too complex🙁
@m.laxminarayanreddy2 жыл бұрын
i got a score of "0.017460452225004253" why i got low score?
@himanchalpawar167 Жыл бұрын
Same prob
@__________________________69102 жыл бұрын
Noice
@hannahvm8044 Жыл бұрын
Plz do videos in English🥲
@adila8128 Жыл бұрын
If you're looking for videos in English you can refer to his other channel. You will find all the videos in the English language.
@HoneySingh-cu3pw8 ай бұрын
Esi video bnaya naa kro jo kisi k leptop m work naa kre kya jya oerte ho smj nhi atta padhne bethq toh sara dinak khrab ho gya kuch hua nhi
@self_official Жыл бұрын
sir aap JSPM Tathwade ke student hai kya
@trojanhorse827811 ай бұрын
youtube shanel
@MrPravinsoni11 ай бұрын
Boston housing dataset has been removed from scikit-learn. Is there any way to load it as a bunch data??
@ubarbde8 ай бұрын
from sklearn.datasets import fetch_california_housing housing = fetch_california_housing()
@RoyParihar-p4l5 ай бұрын
from sklearn.datasets import fetch_california_housing use this