Linear Regression Summary in R

  Рет қаралды 60,970

Dataslice

Dataslice

Күн бұрын

Пікірлер: 84
@nikolescobedo7024
@nikolescobedo7024 3 жыл бұрын
learn more in 10min than in one semester of stat THANK U SOO MUCH
@Annielytics
@Annielytics 2 жыл бұрын
This is the best explanation I've seen to date. Thanks for focusing more on what the numbers mean and the conclusions we can make about our models and less on the underpinning formulas.
@analyst42
@analyst42 7 ай бұрын
WOW! This is easily the best explanation of the summary statistics for a linear regression model that I've ever encountered. Thank you so much!
@kennedygolfhead4356
@kennedygolfhead4356 2 жыл бұрын
MY GOD!! IT WAS SOOOOO HELPFUL!! Best explanation ever in just 10 minutes!!!!! How life saving this is for all academics and data scientists!! Would you please please consider going over the summary of Linear Mixed Modelling??? THANK YOU A MILLION!!
@georgie66549
@georgie66549 2 жыл бұрын
I wish there was a love button for this video. Thank you so much!!! I read through my lecture and still had no real clue what I was looking at in R. My understanding is so much clearer now
@ihrinbaxiuse
@ihrinbaxiuse 7 күн бұрын
Amazing! Im currently doing my masters in psychology, and this was super helpful! thanks!
@rohitekka2674
@rohitekka2674 3 жыл бұрын
Thank you for the wonderful explanation. This video really felt like light at the end of the tunnel. An absolute enlightenment.
@reubenbrown1995
@reubenbrown1995 3 жыл бұрын
Brilliant, compressed a week of lectures into 10 minutes!
@curasvitas0731
@curasvitas0731 2 жыл бұрын
oh my gosh this is one of the best explanations I have seen. thank you very much!! I love the part you touched on each of the indicators of the summary() code mean. thank you!!
@CamViesky
@CamViesky 3 жыл бұрын
Absolutely brilliant, clear, and concise explanation. Thank you.
@withwithouteconomics8609
@withwithouteconomics8609 Ай бұрын
This video was really really helpful for me even after 4 years. You explained so well that cleared my confusions. Thank you so much. Your explanation are really helpful for the students who didn't understand these in 'R' on summary of the regression.
@dataslice
@dataslice Ай бұрын
Glad it was helpful!
@thesoaringdividend3830
@thesoaringdividend3830 7 ай бұрын
LOVED THIS video! Way better than how my Data Mining professor explained it 😅
@ianleboo
@ianleboo 3 жыл бұрын
Dataslice is just wow... Precise, informative and accurate. Good work👏 Much love from 🇰🇪
@luismi8936
@luismi8936 3 жыл бұрын
Thank you man, so accurate. So much information well explained. You're amazing
@rasmusnordman6764
@rasmusnordman6764 Жыл бұрын
Absolutely incredible video, thank you so much!
@NamNguyen-kp1xu
@NamNguyen-kp1xu Жыл бұрын
Such an underated channel, clean explanation and straight to the point !
@annazheng3391
@annazheng3391 2 жыл бұрын
So clear and helpful!! Answered all my questions in 10 mins. Thank you!
@edadila
@edadila 3 жыл бұрын
this was all i was looking for. perfect explanation, thank you!
@dodgecarlincila879
@dodgecarlincila879 2 жыл бұрын
Thanks for the visual examples, very helpful. Can't wait for your Machine Learning videos!
@krisztinachristmon9978
@krisztinachristmon9978 3 жыл бұрын
Thank you so much! Finally was able to make sense of the R output and interpret my data.
@marcodomenicoolivi352
@marcodomenicoolivi352 3 жыл бұрын
in 10 minutes, you have explained the linear regression much better than my professor
@emmy8133
@emmy8133 2 жыл бұрын
This really solved my question, thanks a lot.
@johners2006
@johners2006 3 жыл бұрын
Very clear and helpful. Pace was good. Thanks for doing it.
@ihsan3700
@ihsan3700 3 жыл бұрын
THANK YOU. Such an amazing lecture .
@HuongGiangNguyen-qt3sm
@HuongGiangNguyen-qt3sm Жыл бұрын
Thank you! Very well explained.
@CanDoSo_org
@CanDoSo_org 2 жыл бұрын
Thank you. Nice and clean.
3 жыл бұрын
Excellent! Thanks for sharing.
@jasperembiricos2704
@jasperembiricos2704 4 ай бұрын
You just saved my undergrad degree and I'm not kidding
@Care_and_share
@Care_and_share 3 жыл бұрын
Thank you for video. Much helpful !!
@kelliegadeken8481
@kelliegadeken8481 3 жыл бұрын
Wow, so clear and easy to understand. Thanks!
@danielsummers9345
@danielsummers9345 4 жыл бұрын
Very helpful, quick and easy to understand!
@dataslice
@dataslice 4 жыл бұрын
Thanks! :)
@nextlevel6825
@nextlevel6825 2 жыл бұрын
Incredible 🚀🚀
@Kenkoopa44
@Kenkoopa44 Жыл бұрын
Excellent!!!! Thanks so much!
@ahmed007Jaber
@ahmed007Jaber 3 жыл бұрын
this is superb and clear. thank u for this
@cezreycor
@cezreycor 3 жыл бұрын
pretty cool stuff man, many thanks for the clear explanation!
@tagamag
@tagamag 2 жыл бұрын
Very well done. Please do a few such videos on Stepwise regression, Logistic regression etc.
@malinkata1984
@malinkata1984 2 жыл бұрын
Thank you. Great explanation. :)
@marvinschumann6832
@marvinschumann6832 3 жыл бұрын
Great video my man!!! Thank you so much!
@brazilfootball
@brazilfootball 2 жыл бұрын
Great video, thank you! Any chance you could make one for the summary output of other types of regression models (Logistic, neg. binomial, Poisson, etc.)?
@abdullahalayed5276
@abdullahalayed5276 3 жыл бұрын
Very good. Appreciate the effort.
@SavageThrifter
@SavageThrifter 2 жыл бұрын
I was just trying to brush up on my econ/statistics degree because it's been 5 years since I was in university. I just realized how much I've forgotten 😳 😬
@shuvhamdigitalacademy3228
@shuvhamdigitalacademy3228 3 жыл бұрын
Kindly make some videos on multiple regression analysis and interpretation.
@hashemfathi1646
@hashemfathi1646 3 жыл бұрын
spot on.... just one question, what does the " on 2" mean in the F statistic part?
@dataslice
@dataslice 3 жыл бұрын
Good question -- that's how many x variables we used for the regression
@harentongaray3443
@harentongaray3443 2 жыл бұрын
So, if the P value is less than. 0.5 the model is significant and therefore we void the null hypothesis?
@Quetzal00358
@Quetzal00358 2 жыл бұрын
This was great! Have you made a video where you also include categorical variables?
@jac6003
@jac6003 3 жыл бұрын
Great channel! Thanks!!
@jives.
@jives. 3 жыл бұрын
thank you dataslice gang
@CaseySchacher
@CaseySchacher 3 жыл бұрын
How do I access the second video talking about diagnosing regression models? You mentioned that were going to make the new modeling/diagnostics video towards end of this one. Really appreciated this video!
@dataslice
@dataslice 3 жыл бұрын
Yes, I'm hoping to release a video covering the linear regression plots soon and then potentially more regression videos down the line!
@asseflas
@asseflas Жыл бұрын
This was great thanks :)
@aishwariyagupta619
@aishwariyagupta619 3 жыл бұрын
How do we know residuals are normally distributed?
@aishwariyagupta619
@aishwariyagupta619 3 жыл бұрын
Hi, can we determine the sample size from this output?
@amirmirou8037
@amirmirou8037 2 жыл бұрын
Dude thanks a lot!
@genevieveemefaasare8352
@genevieveemefaasare8352 2 жыл бұрын
Thanks so much.
@zakariya_am
@zakariya_am 10 ай бұрын
Thank you
@nooberinho
@nooberinho 4 жыл бұрын
Very helpful, thanks
@jossri
@jossri 3 жыл бұрын
Great video!. Thank you. I have a question more related to the type of object of the Lm output. If I’m doing several Lm, how can I extract values of the output and append in a df to compare the results?
@dataslice
@dataslice 3 жыл бұрын
Great question! You can save the output of the model by assigning the summary of it to a variable, e.g. `x = summary(fish_model)`. Then, if you open up 'x', you'll notice it's a list object with different vectors and values -- you can do `names(x)` to see the different variables and access them accordingly. For instance, if you wanted to extract the r squared, you could call `x$r.squared`
@jossri
@jossri 3 жыл бұрын
@@dataslice thank you so much for your answer.
@doumansarouei4523
@doumansarouei4523 3 жыл бұрын
very helpful, thanks
@darkrillen
@darkrillen Жыл бұрын
well said
@kennylee6768
@kennylee6768 3 жыл бұрын
So what is the regression equation?
@nooberinho
@nooberinho 4 жыл бұрын
Your video was helpful for some working I'm doing atm. Hopefully you could help me with this question I've asked elsewhere: Hello, I've seen many statistics courses note that for a single linear regression if you regress an outcome variable on a binary predictor variable the slope coefficient is the same as the difference in average outcomes between the two groups. Is this still accurate for a multiple linear regression for a binary predictor variable when you also have multiple other non-binary variables? Thanks!
@dataslice
@dataslice 4 жыл бұрын
If you have a multiple linear regression with one binary predictor and multiple non-binary predictors, then the slope of the binary predictor is the same as the difference in average outcomes between the two groups *if you hold all other predictor variables constant*. An example of this would be if we were plotting weight as a function of height and gender (weight ~ height + isMale). If the coefficient for isMale is 20, then holding height constant, the difference between the avg male and female is 20. Note that this would be different if there were any interaction effects between isMale and height
@nooberinho
@nooberinho 4 жыл бұрын
@@dataslice that's great, thanks very much
@noamills1130
@noamills1130 4 жыл бұрын
@dataslice What if you have a categorical predictor that has more than two possible values? Would you have to use a different kind of regression model?
@dataslice
@dataslice 4 жыл бұрын
@@noamills1130 Great question. So going back to the previous example with plotting weight as a function of height and gender (weight ~ height + isMale), let's say we had a 'race' variable that could either be white, hispanic, asian, or african american. We could then create 3 additional dummy variables (isHispanic, isAsian, isAfricanAmer) in our data for the regression. If isHispanic = 1, isAsian = 0, and isAfricanAmer = 0 then that represents the race as hispanic (and so on and so forth for asian and african american). If all three dummy variables are 0, then the person would be white (the baseline). When you make the regression, each dummy variable would be given a coefficient which could help you determine the prediction among the different races. Does that make sense?
@noamills1130
@noamills1130 4 жыл бұрын
@@dataslice Great, thank you so much! I'll be using this for my research project analyzing wildfire trends in the US.
@justin2icy
@justin2icy 3 жыл бұрын
is the "-433.576" known as the regression coefficient?
@ianleboo
@ianleboo 3 жыл бұрын
It is considered the mean of the regression equation when predictor variables are all zero.
@BarcenasJoel
@BarcenasJoel 4 жыл бұрын
How would you interpret the estimate for intercept?
@dataslice
@dataslice 4 жыл бұрын
Depending on what data you're trying to fit, the interpretation may vary. For instance, if we were fitting a line on a dataset of ages and weights (Y = weight, x = age), the interpretation of the intercept would be 'how much a person weighs when they are born (age 0)'. However, if you're fitting a line to data that's very far from the x-axis, your interpretation may be invalid
@not_from_here4477
@not_from_here4477 3 жыл бұрын
nailed it!
@BarcenasJoel
@BarcenasJoel 4 жыл бұрын
What does it mean when you have a std. error that is higher than your coefficient?
@dataslice
@dataslice 4 жыл бұрын
Again, it's hard to tell without seeing the data but typically this means that the variable may have no statistically significant effect. This could happen because there's actually no effect, or there are some outliers in the data that's affecting the fit
@dicejailwarden
@dicejailwarden 3 жыл бұрын
Why did I watch an hour long lecture that you covered in ten minutes?!? Our teacher should’ve just sent us to your channel
@gladiatorsfc9952
@gladiatorsfc9952 4 жыл бұрын
7:35 R Squared Interpretation
@apurbab123
@apurbab123 3 жыл бұрын
Waiting for the 2nd video of this topic
@dataslice
@dataslice 3 жыл бұрын
Part 2 (Regression *Plots* Explained): kzbin.info/www/bejne/qJeraKN5e9t5ipI
@nol-sor1985
@nol-sor1985 3 жыл бұрын
10 min >>>>>>>> 2 trimesters
Multivariable Linear Regression in R: Everything You Need to Know!
20:48
yuzaR Data Science
Рет қаралды 7 М.
Explaining logistic regression
12:00
Very Normal
Рет қаралды 16 М.
Мясо вегана? 🧐 @Whatthefshow
01:01
История одного вокалиста
Рет қаралды 7 МЛН
1% vs 100% #beatbox #tiktok
01:10
BeatboxJCOP
Рет қаралды 67 МЛН
The Best Band 😅 #toshleh #viralshort
00:11
Toshleh
Рет қаралды 22 МЛН
Interpreting R's regression table
17:11
James Scott
Рет қаралды 17 М.
Regression Output Explained
33:19
zedstatistics
Рет қаралды 679 М.
Simple linear regression in R
10:07
Equitable Equations
Рет қаралды 3,9 М.
Interpreting R Output For Simple Linear Regression Part 1
13:00
Jonathan Brown
Рет қаралды 91 М.
Tutorial on how to do simple linear regression in R
12:00
R for Ecology
Рет қаралды 2,8 М.
Statistics 101: Multiple Linear Regression, The Very Basics 📈
20:26
Brandon Foltz
Рет қаралды 1,3 МЛН
Checking assumptions of the linear model
9:05
Drew Tyre
Рет қаралды 51 М.
Multiple regression analysis - effect modifiers and interactions
15:04
R Programming 101
Рет қаралды 3,7 М.
Мясо вегана? 🧐 @Whatthefshow
01:01
История одного вокалиста
Рет қаралды 7 МЛН