One of the most significant benefits of local regression is that it allows you to easily estimate a regularized derivative. It's practically the best method for differentiating any measurements.
@anekamulgund3842 жыл бұрын
Thank you for this video! All the info was very well-put and easy to follow.
@BigBameSmallBrain2 жыл бұрын
Agreed
@sykicks96482 жыл бұрын
Amazing work, thank you!
@ksrajavel2 жыл бұрын
Amazing.
@TomVI1316 Жыл бұрын
Really helpful! Cheers
@SaifulIslam-li3ig2 жыл бұрын
Excellent. How do we implement this in SAS?
@lesliemyint18652 жыл бұрын
I'm not a SAS user, but this page seems to have more information: support.sas.com/rnd/app/stat/procedures/gam.html
@charliezhu1632 жыл бұрын
Is there a way to output the fitted spline for each predictor explicitly, e.g. f1(year), f2(age), either with R or Python packages?
@lesliemyint18652 жыл бұрын
If you fit a GAM using splines, it's just fit using least squares (lm() in R) so you can construct the individual functions (f1, f2) based on the linear model coefficients and the spline transformations. If LOESS or something like smoothing splines are used, I'm not aware of a way to get the functions directly. In general, a workaround is to construct them by hand: create a vector of input values across the domain of a given predictor X (e.g., a little beyond the range of the observed data), set the other predictors to a constant value, use the fitted GAM to predict the outcome across the values of the predictor X--> this gives you input-output pairs that describe the function. Then you can repeat for the other predictors.
@nightcross10302 жыл бұрын
Check out the `gratia` package, which has some awesome helper function