Local Regression and Generalized Additive Models

  Рет қаралды 15,512

Leslie Myint

Leslie Myint

Күн бұрын

Пікірлер: 13
@TheOnlyAndreySotnikov
@TheOnlyAndreySotnikov 4 ай бұрын
One of the most significant benefits of local regression is that it allows you to easily estimate a regularized derivative. It's practically the best method for differentiating any measurements.
@anekamulgund384
@anekamulgund384 2 жыл бұрын
Thank you for this video! All the info was very well-put and easy to follow.
@BigBameSmallBrain
@BigBameSmallBrain 2 жыл бұрын
Agreed
@sykicks9648
@sykicks9648 2 жыл бұрын
Amazing work, thank you!
@ksrajavel
@ksrajavel 2 жыл бұрын
Amazing.
@TomVI1316
@TomVI1316 Жыл бұрын
Really helpful! Cheers
@SaifulIslam-li3ig
@SaifulIslam-li3ig 2 жыл бұрын
Excellent. How do we implement this in SAS?
@lesliemyint1865
@lesliemyint1865 2 жыл бұрын
I'm not a SAS user, but this page seems to have more information: support.sas.com/rnd/app/stat/procedures/gam.html
@charliezhu163
@charliezhu163 2 жыл бұрын
Is there a way to output the fitted spline for each predictor explicitly, e.g. f1(year), f2(age), either with R or Python packages?
@lesliemyint1865
@lesliemyint1865 2 жыл бұрын
If you fit a GAM using splines, it's just fit using least squares (lm() in R) so you can construct the individual functions (f1, f2) based on the linear model coefficients and the spline transformations. If LOESS or something like smoothing splines are used, I'm not aware of a way to get the functions directly. In general, a workaround is to construct them by hand: create a vector of input values across the domain of a given predictor X (e.g., a little beyond the range of the observed data), set the other predictors to a constant value, use the fitted GAM to predict the outcome across the values of the predictor X--> this gives you input-output pairs that describe the function. Then you can repeat for the other predictors.
@nightcross1030
@nightcross1030 2 жыл бұрын
Check out the `gratia` package, which has some awesome helper function
@julesstreet6409
@julesstreet6409 Жыл бұрын
Video goes hard
@deepshahsvnit
@deepshahsvnit Жыл бұрын
Please share codes in desciption box
Logistic Regression
12:08
Leslie Myint
Рет қаралды 1,7 М.
Modeling Nonlinearity: Polynomial Regression and Splines
10:11
Leslie Myint
Рет қаралды 11 М.
[BEFORE vs AFTER] Incredibox Sprunki - Freaky Song
00:15
Horror Skunx 2
Рет қаралды 20 МЛН
Интересно, какой он был в молодости
01:00
БЕЗУМНЫЙ СПОРТ
Рет қаралды 3,9 МЛН
Introduction to Generalized Additive Models with R and mgcv
3:22:40
Bottom of the Heap
Рет қаралды 74 М.
Lowess and Loess, Clearly Explained!!!
10:10
StatQuest with Josh Starmer
Рет қаралды 131 М.
GLM vs. GAM - Generalized Additive Models
8:01
Meerkat Statistics
Рет қаралды 4,3 М.
Statistical Methods Series: Generalized Additive Models (GAMs)
1:52:01
Ecological Forecasting
Рет қаралды 19 М.
Polynomial Regression and Splines
7:34
Leslie Myint
Рет қаралды 19 М.
Estimating Causal Effects: Regression
14:35
Leslie Myint
Рет қаралды 3,6 М.
What is LOESS and When Should I Use It?
16:51
The Actuarial Data Scientist
Рет қаралды 14 М.
Evaluating Classification Models
13:56
Leslie Myint
Рет қаралды 3,9 М.