What are the other techniques I can use to treat outliers or convert negative or positive skewed data into normal distribution form?
@nabeelnaseer55925 жыл бұрын
roots, exponents, inverse methods..
@nizamlootera31634 жыл бұрын
In Linear Regression suppose both the variables or features are positively skewed, then we should apply log10 to both of them
@XuanTran-ri1hn2 жыл бұрын
How about log 1 plus?
@nabeelnaseer55925 жыл бұрын
What can we do if even after the transformation, there are outliers..am kinda puzzled over this notion of natural outliers. Like we are supposed to treat them separately.. can you give some pointers..
@mansirawat1052 Жыл бұрын
Suppose in one of my outcome measures pre is normal but post is not normal, so should I log transform only the post recording or should I transform both the pre and post values for further analysis?
@aakashv45945 жыл бұрын
What are the functions to be applied for negative skews and also if the data has zero
@ajaykushwaha-je6mw3 жыл бұрын
Sir what is the correct sequence of variable transformation. First we need to do feature scaling then Gaussian transformation or First Gaussian transformation then feature scaling ?
@pallavijagtap81403 жыл бұрын
Sir, Once you transform the variables, do we have to use same transformed columns in further process of melling?
@pallavijagtap81403 жыл бұрын
Pallavi Jagtap 1 second ago Sir, Once you transform the variables, do we have to use same transformed columns in further process of modelling?
@balamurali752 жыл бұрын
Sir small dout I have two variables(independent and Dependent) represented in percentage. If I apply log for only one variable. Will result differs. Is it the correct way of transformation/analysis
@durgadeviarulrajan45602 жыл бұрын
Hi, Thanks for the great video. Is it necessary to convert all features into normally distributed, before modeling? Is it a compulsory step to follow in feature engineering?
@usmanriaz6241 Жыл бұрын
It confuses me too. tell me if you know now
@vinayvvalaboju3 жыл бұрын
Can you fix a custom bin And filter data til upper quartile.
@MrNabiwishes4 жыл бұрын
Log transformation applied to train set, and when out of sample data comes in do we apply same transformation...
@edphi3 жыл бұрын
Excellent
@elyasmohammadi84094 жыл бұрын
Hello and thank you for this nice video. Could you please clarify that what are the axis X and Y before and after log transformation. Thank you in advance
@edphi3 жыл бұрын
Frequency distribution graph
@nikhilgaikwad99544 жыл бұрын
after we transformed the column values using log10. if we build a app using flask what values we should pass for that column to predict the output?? the original value or first we need to transform that value using log 10 and then insert??
@prathameshmistry38684 жыл бұрын
no,the values are inserted and then transformed in the code
@vineethp89254 жыл бұрын
@Prathamesh Mistry can u please explain more clearly because iam also having the same doubt
@amitbudhiraja74983 жыл бұрын
I have a doubt like what is the optimal method to do remove the outliers [Z-score , IQR method] or use transformation methods like log normal or inverse Can someone tell ?
@creativesurgeinfidel3 жыл бұрын
Thank you.. Could you please let me know how to convert natural log back to the original value
@shrutimadan44513 жыл бұрын
using log10 transformation, it didnt give normal distribution. How to deal with this?
@aniketsultan94975 жыл бұрын
other methods square root, cube root , binning
@Karthik_info_vlogs4 жыл бұрын
Good info
@independent72124 жыл бұрын
negatively skewed data to normal distribution?
@rohitjaiswal61024 жыл бұрын
Can u share your github link about this codes....
@TheAIUniversity4 жыл бұрын
Here you go... github.com/nitinkaushik01/Machine_Learning_Data_Preprocessing_Python/find/master?q=
@ankurkamthan58544 жыл бұрын
Why should not taken log with base e and y base 10
@nicholaslipanovich8273 жыл бұрын
The information you communicated to us was fine but your delivery could use some work. Trying to repeat yourself less might help.
@vuminhquanle14264 жыл бұрын
I listened very carefully, cause I can't understand anything at 1.5x Speed