Jake is a great speaker. Enjoyed and learned a lot from his talks. Waiting for more
@juangutierrez736610 ай бұрын
We are using his textbook in our intro to data science class, and his writing is also very informative and accessible at the same time.
@NicolasJulioFlores6 жыл бұрын
The fact that he showed that you can do nearest neighbors without a single loop really shows the power of numpy
@veganath5 жыл бұрын
Absolutely brilliant, still being appreciated, thank you Jake
@sonersteiner2 жыл бұрын
That is cool man, fortranmagic in ipython notebooks!!!!
@JustinHuangA14 жыл бұрын
awesome video. everyone starting out with numpy should watch this video. makes so much more sense now to me.
@234892158 жыл бұрын
Thanks, very informative, the tips make my program run lot faster
@danbrown66982 жыл бұрын
I'm wondering how I can reduce the for loops in my project. And it happens that I met this video😮thanks a lot😁
@gholamrezadar2 жыл бұрын
Amazing video! thank you astronomer.
@subhendum8 жыл бұрын
Great talk . Learned a lot.
@matti13378 жыл бұрын
Really great and enlightening talk.
@yyf234xcvfqew44 жыл бұрын
Great talk.
@VickiBrownatcfcl5 жыл бұрын
I like the embedded image of the speaker, but not when it obscures part of the current slide. ;-(
@gmaffy6 жыл бұрын
Great talk. Since this talk, has there been any other methods developed to make loops faster, other than numpy? Anyone?
@wowepic22564 жыл бұрын
Numba and pypy. Also cython
@JonathanObise4 жыл бұрын
Amazing insight
@sapirAO8 жыл бұрын
Excellent talk.
@MarkJay7 жыл бұрын
awesome video!
@KirillBezzubkine3 жыл бұрын
23:45 - KNN worth pure numpy
@nikolaytodorov97856 жыл бұрын
What makes it fast is what makes it slow...Zen. Joke aside, 10x for the vid! Useful info.
@jimmyshenmusic4 жыл бұрын
This is awesome. Thanks.
@nodavood5 жыл бұрын
Thanks. Very useful tips. But, the nearest neighbors example shows a fatal flaw to losing loops. The diff matrix that you generated, transforms your 1000*3 input to a 1000*1000*3 one. This leads to MemoryError in cases with larger input data. I am sorry, but having a fast loop is still a must.
@tejvirjogani4182 жыл бұрын
Can you not work in batches and minimize the number of single operations
@adamhendry9452 жыл бұрын
The strategies for fast looping begin at 7:15
@gabestrenk54714 жыл бұрын
Are the slides available anywhere?
@johnstarfire3 жыл бұрын
10:16 it gives me 5.19 ms in pure python and 47.4 us with numpy, python is speeding up or computers are faster?
@sachinkaps9 жыл бұрын
What if the data is dynamic? eg a few data points are added every second. So the process might start with no data at the beginning of the day and end up with millions of rows by the end of the day. This is typical for financial time series. I presume insertion of elements or copying would not be very efficient. Is pandas or any other implementation good enough for such use cases?
@fachofacho54366 жыл бұрын
Correct me if i'm wrong, but couldn't you use array slicing to make operations on the array? That is because editing the sliced array edits the array as a whole.
@jb63954 жыл бұрын
what about recursion?
@theamrpi3976 жыл бұрын
Just a doubt though....even if numpy ufunc does take an array as an element....internally should the elements of an array loop to get the output? So is it right to say looping does not happen in numpy?
@RonJohn637 жыл бұрын
11:45 How many of these tasks can also be done using itertools?
@CristiNeagu7 жыл бұрын
They will be slower than ufuncs.
@rohitbhanot78095 жыл бұрын
Itertools is mainly built keeping in mind memory efficiency and not really execution speed.
@CristiNeagu7 жыл бұрын
The problem i have is that i use functions that cannot be trivially simplified to ufuncs. Stuff like detecting a rising edge, for example. How do you speed up those kinds of loops?
@haakonvt5 жыл бұрын
Cristi Neagu Check out numba!
@陆得水5 жыл бұрын
How does X.reshape(1000, 1, 3) - X end up in a result with shape(1000, 1000, 3)? I can't figure it out. Help!!!
Thank you, I now it's out of dated. But it was awesome
@bosk1n6 жыл бұрын
Why is that outdated? Any more effecient techniques out there to make python faster?
@Psycho4Ever6667 жыл бұрын
26:02 one could also just use D[D==0] = np.inf
@ScottTsaiTech7 жыл бұрын
That'd accidentally change the distance between two distinct points that happen to occupy the same space and not just between a point and itself. I think it depends on whether that's acceptable in your model.
@Psycho4Ever6667 жыл бұрын
A bit embarrassing, but I haven't thought about that... it was too obvious xD
@drticktock40112 жыл бұрын
OR....just go back to FORTRAN (or C)
@ibrahimtouman22796 жыл бұрын
Good lecture, but it would have been more interesting if he compared NumPy to other competing numerical computing softwares such as Matlab, for example...!
@annamalainarayanan93108 жыл бұрын
almost everyone who did numpy knows this - seemingly very basic and nothing hacky!