Linear Regression: A friendly introduction

  Рет қаралды 40,844

Serrano.Academy

Serrano.Academy

Күн бұрын

Пікірлер: 119
@sanguinj
@sanguinj 4 жыл бұрын
Luis. I really like your way of teaching. I decided at my 64 start to learn ML, by starting to review my linear algebra. Your way of getting to our heads SVM is the best. Keep doing your hard. Thank you so much for your time. I am just subscribed in your channel !
@suchismitagoswami5609
@suchismitagoswami5609 10 ай бұрын
The best part of your teaching style is how beautifully you help us to visualize a complex problem. This technique has helped me in many context to simplify and break down a complex problem into smaller problems..
@mohammedhasan6522
@mohammedhasan6522 6 жыл бұрын
I sometimes wonder, how can people describe things so simply. Always a big fan and looking forward to seeing more complex things in your style. :)
@kamalkumar-ew8ry
@kamalkumar-ew8ry 6 жыл бұрын
I am beginner to Machine Learning. But able to follow this session 100%. Very rare people can explain the things so easily like you Luis Serrano. Thanks for sharing this video.
@Derfaut
@Derfaut 6 жыл бұрын
High quality content with visualizations and so easy to understand. Thank you!
@atikfaysal426
@atikfaysal426 4 жыл бұрын
You're the best teacher I have found on KZbin. You explain so intuitively. I wish to get more videos from you.
@chakrapani_nallam
@chakrapani_nallam 5 жыл бұрын
The best teacher if we want to learn "how the machines learn".I have watched many of your videos and suggesting them to newbies.
@omarhammouche4831
@omarhammouche4831 5 жыл бұрын
you're the best teacher
@tonakkie635
@tonakkie635 6 жыл бұрын
Again a great lecture Luis. Especially very nice for beginners. I forwarded you video to my daughter who just had a tough course on statistics. Keep up the great work👍. Thanks Ton
@julienbonin
@julienbonin 5 жыл бұрын
You video's are awesome! I love how structured and prepared you are, yet you keep it simple! You rock!
@maheshBasavaraju
@maheshBasavaraju 8 ай бұрын
Your explanation is almost like an elementary school teacher. regression is addng and subtracting to slope and y-intercept. couldn't get easier than this. great!
@neuromorphing9933
@neuromorphing9933 6 жыл бұрын
Luis has an awesome talent to explain complicated things such that even kids can follow and understand. Good job !
@riffaxelerator7299
@riffaxelerator7299 3 жыл бұрын
Even adults can follow and understand too!
@OzScout66
@OzScout66 4 жыл бұрын
One word..... BRILLIANT!
@ruudhermans4243
@ruudhermans4243 5 жыл бұрын
Number 1 video on linear regression I have seen so far on youtue. It makes what sounds complex, easy to understand.
@FarizDarari
@FarizDarari Жыл бұрын
One of the BEST linear regression tutorials, many thanks!!!
@pushkarparanjpe
@pushkarparanjpe 5 жыл бұрын
Love this style of teaching!
@subrata6666
@subrata6666 3 жыл бұрын
Your videos explanations visualizations are just addictive
@jochoniahnzomo5937
@jochoniahnzomo5937 4 жыл бұрын
Things have never been so in clear my mind. I love your method of teaching
@luisbermudez7000
@luisbermudez7000 6 жыл бұрын
Really good! Thought it would be too simplified and abstracted, but no. I can code this up. More please!!
@rajkumarc6759
@rajkumarc6759 5 жыл бұрын
Thanks Luis, I am truly benefiting from your lessons, you are making these concepts very easy to understand. Have already started to view your playlists especially the ML and maths... Continue the good work!!!!
@abhijeetsnaik
@abhijeetsnaik 3 жыл бұрын
best part is I understood complex Concept very easily.. !! Thanks a lot.. I am fan of this channel.
@peregudovoleg
@peregudovoleg 3 жыл бұрын
Fresh and intuitive explanation. Thank you.
@121Pal
@121Pal 5 жыл бұрын
Very simple yet powerful video. You have a great gift for teaching.
@spicecandy5248
@spicecandy5248 6 жыл бұрын
Excellent Luis!! Thanx!! impressive way of explaining complex things for making understanding easy n trivial
@muskankhaneja9512
@muskankhaneja9512 4 жыл бұрын
Sir, It is so good to learn from your videos. Complicated things such simplified! Thank you.
@neelkamal3357
@neelkamal3357 3 ай бұрын
Wow man , my mind was just blown away now
@NikeJustDoItBeaverton
@NikeJustDoItBeaverton 4 жыл бұрын
This is called right / write from scratch ... Great and Simple .. Amazing
@ignaciosanchezgendriz1457
@ignaciosanchezgendriz1457 Жыл бұрын
Really good Luis, thanks for sharing the way you see ML 🎉
@senthilmuruganr234
@senthilmuruganr234 4 ай бұрын
Excellent presentation sir
@HypnosisBear
@HypnosisBear 3 жыл бұрын
I'm extremely lucky to find this channel. This is a god level explanation, thx sooo much. 🙏😎😎😎👍👍👍👍
@AlexPrabhakaran
@AlexPrabhakaran 5 жыл бұрын
Simple and powerful explanation. Thank you Luis for this wonderful video.
@moinulhoque2160
@moinulhoque2160 4 жыл бұрын
No doubt!! You are the best. We all lost in math equation, rather than visualizing it.
@user-bz7fj1fk2m
@user-bz7fj1fk2m Жыл бұрын
10QUVM for all your zeal and valuable presentation!!!
@himanshudalai1028
@himanshudalai1028 5 жыл бұрын
Beautiful & Extra-ordinary explanation !! Thank You LUIS.
@arkanasays
@arkanasays 3 жыл бұрын
Fabulous explanation and awesome graphics. Please do post more videos on ML algorithms, you explain them so clearly.
@victorrodas4357
@victorrodas4357 5 жыл бұрын
Muchas Gracias Luis. A ti si te entiendo.
@soajack
@soajack 6 жыл бұрын
Another great video of @Luis Serrano !!! Great !!!
@kanokyusuki
@kanokyusuki 5 жыл бұрын
Thank you so much Luis! This has been really helpful.
@rajeshvarma2162
@rajeshvarma2162 2 жыл бұрын
After watching this tutorial, I became a big fan of yours.
@changshenglism
@changshenglism 3 жыл бұрын
feel easy to understand the algorithm! many thanks!!
@agentNirmites
@agentNirmites 4 жыл бұрын
Great teacher, Thank you very much.
@felixvadan6073
@felixvadan6073 6 жыл бұрын
Really great stuff. Please continue making these videos.
@frankpimiskern
@frankpimiskern 6 жыл бұрын
Holy Smokes thank you Luis! Clear and concise. Thank You!
@AndrewReeman_RemD
@AndrewReeman_RemD 3 жыл бұрын
Great videos and such clear explanations. Thank you for creating these
@noorhashem7
@noorhashem7 9 ай бұрын
Love these explanations! What tool do you use for these wonderful animations?
@koushikdas2755
@koushikdas2755 2 жыл бұрын
Great. Content.... Well explained...thanks so much
@wookotech4216
@wookotech4216 5 жыл бұрын
Thank You! You made it very simple and clear!
@MarcelTndl
@MarcelTndl 4 жыл бұрын
Muy bueno Luis, ya lo estoy probando en Go . Gracias !!!
@EliezerTseytkin
@EliezerTseytkin 5 жыл бұрын
Simple and brilliant! Thank you!
@carlodavid7360
@carlodavid7360 6 жыл бұрын
Thanks @Luis Serrano
@SerranoAcademy
@SerranoAcademy 6 жыл бұрын
Thanks for watching!
@carlodavid7360
@carlodavid7360 6 жыл бұрын
@@SerranoAcademy can you do friendly introduction to GANs?
@SerranoAcademy
@SerranoAcademy 6 жыл бұрын
@@carlodavid7360 Great idea! It's one of the things I've been looking at, trying to understand them more clearly these days...
@RahulRageshRSquare
@RahulRageshRSquare 6 жыл бұрын
Gans! Please!
@soniaardila
@soniaardila 6 жыл бұрын
Very friendly introduction ! Thanks! See you soon in Bogotá!
@SerranoAcademy
@SerranoAcademy 6 жыл бұрын
Thank you! Definitely, see you soon!
@devidevatha
@devidevatha Жыл бұрын
I have an arts background, but I was able to follow your video. ❤🧡 Thanks for uploading. Keep uploading more.
@kskuppu
@kskuppu 6 жыл бұрын
Superb!! Simple and Best. Keep doing the good work.
@vibekdutta6539
@vibekdutta6539 5 жыл бұрын
ypu are awesome mr.luis
@dtakamalakirthidissanayake9770
@dtakamalakirthidissanayake9770 4 жыл бұрын
Thank You. This Is Great!!!
@macknightxu2199
@macknightxu2199 4 жыл бұрын
should machine learning include back propagation?
@box40able
@box40able 4 жыл бұрын
Hola, me encanta tus vídeos, ¿este vídeo está disponible en español?
@VikramSingh-fl4qe
@VikramSingh-fl4qe Жыл бұрын
You got a shoutout from one of India's finest Data Science KZbinr Nitish @CampusX, Thank you so much for your very simplified version of datasc
@SerranoAcademy
@SerranoAcademy Жыл бұрын
Ohhh thank you! I got a huge bump in subscribers and was trying to figure out where it came from! I just saw Nitish's video, such a kind shout out. I'll thank him, I'm a big fan of him as well.
@pauldmanuel
@pauldmanuel 4 жыл бұрын
Luis Simply amazing. One small question? It is true that the linear regression line always passes through the mean of the data points. Why don't we start with the line which passes through the mean of the data points? In this case, we worry about only the slope and we can ignore y-intercept. Does it make any difference? Paul Manuel
@NikeJustDoItBeaverton
@NikeJustDoItBeaverton 4 жыл бұрын
That is great trick( rather random line , start at mean) ... Please let me know it worked or improved your model by any means...
@TheSaintsVEVO
@TheSaintsVEVO 4 жыл бұрын
How do you extend this to higher dimensions? Is there a recommended video for that?
@kiran082
@kiran082 5 жыл бұрын
Great Video
@aujard1236
@aujard1236 5 жыл бұрын
감사합니다. 좋은 영상 입니다. 추천 합니다.
@danellis7443
@danellis7443 6 жыл бұрын
Merry Christmas Luiz, hope you’re good :)
@SerranoAcademy
@SerranoAcademy 6 жыл бұрын
Thanks Dan, merry christmas to you too!
@RiteshMagreIT
@RiteshMagreIT 6 жыл бұрын
Sir I am doing research in visual speech recognition. Please make a video on visual speech recognition. Your way of explaining is very nice.
@mayankshah1123
@mayankshah1123 6 жыл бұрын
Nice video Sir!!! It would be nice If you could provide the powerpoint presentation file in the description.
@jenyasidyakin8061
@jenyasidyakin8061 5 жыл бұрын
Thank you, Luis, you are the best teacher. The "square trick" is an official name for that algorithm ? is that an alternetive to error function and gradient dicent ?
@jameseconomy2578
@jameseconomy2578 5 жыл бұрын
Luis, All your videos are so helpful. I have a question though regarding this one. How does the point say "Come closer" (how does the point know it needs to come closer) and how do we know the line is actually closer to the point? Thanks.
@yasmad4553
@yasmad4553 6 жыл бұрын
Thx alot So informative
@abdelrahmanwaelhelaly1871
@abdelrahmanwaelhelaly1871 4 жыл бұрын
These videos are really good, there are a lot of mistakes you made in this chapter in your book , which lead to a very confusing experience. here it's much better.
@fahimachowdhury6780
@fahimachowdhury6780 3 жыл бұрын
In your first step, Do we take the random line? Or do we draw a line by doing average? How do I know whether a point is below or above to the line and left or right to the y-axis?
@davide8228
@davide8228 2 жыл бұрын
We just pick a random line. To see if a point is below or above.... it's only a math problem. It's very easy so instead of ask here try for yourself with pen and paper. Make a Cartesian plane and pick a point, writing its coordinates
@sofianeben3028
@sofianeben3028 5 жыл бұрын
i appreciate it mate
@peeyushkumar8843
@peeyushkumar8843 5 жыл бұрын
Sir,how can i know that this is the fitted line??
@atinsood
@atinsood 6 жыл бұрын
Luis, much appreciate this and making this so easy to understand. Few questions: 1. Does the line always need to be a straight line or can it be a curve(or is that the reason why it is called linear). 2. If so why/what implications is using a curved line also thanks for the hidden gem explaining beautifully why square error is called square error. 3. when doing the square error, why only consider the vertical distance, why not create squares using horizontal distances
@SerranoAcademy
@SerranoAcademy 6 жыл бұрын
Thanks! A curved line can be used, for example, one with a polynomial equation (quadratic, cubic), instead of linear. This is called polynomial regression. One can also combine lines to make curved lines, and this is what neural networks do.
@Han-ve8uh
@Han-ve8uh 3 жыл бұрын
Vertical distances have practical meanings. It's the gap between the predicted value and actual value we care about. In simple linear regression, vertical axis is output and horizontal axis is input. Intuitively, vertical gaps are more important to minimize than horizontal gaps.
@moueshchronicles
@moueshchronicles 6 жыл бұрын
Excellent
@farzadfarzadian8827
@farzadfarzadian8827 5 жыл бұрын
You clever and clear my 5th grade son understands it.
@BharatSharma-ek8sb
@BharatSharma-ek8sb 5 жыл бұрын
Thank you so much . I hope learning from you will make difference in my professional career. I have 2 questions. 1). When I initialize random line , I need to choose some initial numbers for slope and Y intercept . what is best practice for choosing these numbers. 2) using square trick , I need 2 coordinates to find vertical and horizontal distances. I have one coordinate from dataset (x1,y1) but how to find another one (x2,y2) (which i assume satisfies line equation?) .
@Han-ve8uh
@Han-ve8uh 3 жыл бұрын
For vertical gap, the 2 points have same x. One y comes from the point, the other y comes from prediction from line by substituting into y=mx+b. For horizontal gap, the 2 points have same y. One x comes from the point, the other x is 0 since it's on the y axis.
@dilipgawade9686
@dilipgawade9686 6 жыл бұрын
Hi Sir, Please make videos on Random Forest and Descision Tree
@very_old_dog
@very_old_dog Жыл бұрын
I'm wondering if dependency is not linear (but lets say, exponential or quadratic) does the solving non linear task would still be called linear regression?
@SerranoAcademy
@SerranoAcademy Жыл бұрын
Absolutely! That is called quadratic regression, or polynomial regression if the degree is higher. These models can also be trained in the same way as linear regression (by updating the weights using gradient descent). Note that the higher the degree of the polynomial, the better the fit, but the more prone you are to overfitting, so often when polynomial regression is used, one should also use something like regularization, to prevent overfitting.
@very_old_dog
@very_old_dog Жыл бұрын
@@SerranoAcademy got, thx so much. Perhaps that could be a topic for one of the next video ;)
@SerranoAcademy
@SerranoAcademy Жыл бұрын
@@very_old_dog Great idea! i've been wanting to make a video on polynomial regression for a while, but something else always comes up...
@scherwinn
@scherwinn 5 жыл бұрын
Clever great!
@sintwelve
@sintwelve 5 жыл бұрын
Please make a book so I can put you properly in my reference! Or is there another way for me to do so?
@SerranoAcademy
@SerranoAcademy 5 жыл бұрын
Thanks! A book is coming in a few months, but in the meantime you can reference the video. I’ll make the announcement when it’s out
@koreaorang2351
@koreaorang2351 6 жыл бұрын
Thanks!!
@joaquingrezmansilla8638
@joaquingrezmansilla8638 4 жыл бұрын
hello Luis, i like the way you teach. Tendrás este video en español? vi el del cluster analisis y me ayudó mucho para mi tesis de magíster...
@SerranoAcademy
@SerranoAcademy 4 жыл бұрын
Gracias Joaquin! No tengo exactamente el mismo video en espanol, pero casi igual, con regresion lineal. Aca esta: kzbin.info/www/bejne/gp3MfqOcgtmde9E
@huojinchowdhury3933
@huojinchowdhury3933 3 жыл бұрын
I am little bit confused here Say, when first point say come closer it goes closer to it. Again when second point says come closer it goes towards it. If the third point is way more far from previous two point, then line will be go far way from first two points to be closer to third point. That means, data with more outlier, line will be never near maximum points but it will remain besides outliers. Is it something like while line moving towards a point, it will consider one point at a time? Or considers all other points towards which it moves already and the current point?
@Han-ve8uh
@Han-ve8uh 3 жыл бұрын
This video is showing stochastic gradient descent where each update only considers 1 point. You can consider more than 1 point too (mini-batch GD) or even all the points in the data (GD), which is the most accurate way of updating weights and biases. The geometric interpretation he gives here is exactly the same as the usual gradient descent we see from other sources (just different by constant factors). If we want to consider more points, then the update for both slope and y-intercept will consider the mean of the current operations on vertical/horizontal gaps. Assuming the line updates by looking at points randomly, each point should get seen the same number of times and after many epochs of seeing all points (you can consider 1 epoch as seeing 1 point, or 1 epoch as seeing all points), the line should get better. The issue you mentioned of line not getting updated to a better position and always staying beside outliers should not happen unless the points you use to update the line are always the same outliers.
@saliyari
@saliyari 4 жыл бұрын
Hi, What do you use for your animations? I wanna make some slides for my students (now that everything is online) but I don't have much of an experience with apps that could make a nice animation like you have here.
@SerranoAcademy
@SerranoAcademy 4 жыл бұрын
Hi Saleh, thanks for your question! I use keynote for the animations, and iMovie for the editing.
@saliyari
@saliyari 4 жыл бұрын
@@SerranoAcademy Thanks a lot. Kudos to you for posting high quality material and making it available to the public. Also, I asked the same question on your homepage. Please ignore that message. Thanks again.
@QuantaCompassAnalytics
@QuantaCompassAnalytics 8 ай бұрын
Luis, I really liked the explanation of pseudo code, 😊 Thankyou for connecting on LinkedIn ❤
@ayman001B
@ayman001B 6 жыл бұрын
Where can I actually code the algorithm and visualise it ? and Thank you for succiding at explaining something my teatchers failed at.
@SerranoAcademy
@SerranoAcademy 6 жыл бұрын
Thanks! I suggest coding it in numpy (python). You can also find packages like scikit-learn, which already have implemented it, so you don't need to hard code it.
@weekoo9189
@weekoo9189 6 жыл бұрын
Yo! Great Video!
@aigaurav5024
@aigaurav5024 6 жыл бұрын
Thanku sir
@thisismrsanjay
@thisismrsanjay 2 жыл бұрын
you should be adding more videos in youtube really different then rest
@priyasearcher
@priyasearcher 6 жыл бұрын
understood sir
@macknightxu2199
@macknightxu2199 4 жыл бұрын
pick one random point, later pick another random point?
@testme2026
@testme2026 2 жыл бұрын
Those three videos go very well with the book, woudl be great to do a video for each chapter like those. . Thank you again
@SerranoAcademy
@SerranoAcademy 2 жыл бұрын
Thanks! Great idea! I’m actually working on a decisión trees one now. There are a few other videos for chapters in the book, like a naive Bayes video, so hopefully soon I can get them all there.
@testme2026
@testme2026 2 жыл бұрын
@@SerranoAcademy love it, thank you so much
@entropiclips
@entropiclips 4 жыл бұрын
grat vid
@haydarsalah2968
@haydarsalah2968 3 жыл бұрын
its great but i think it need more math besides visualization
@maulanakamal6188
@maulanakamal6188 4 жыл бұрын
Even i am not native English can grasp
Learn Statistical Regression in 40 mins! My best video ever. Legit.
40:25
Война Семей - ВСЕ СЕРИИ, 1 сезон (серии 1-20)
7:40:31
Семейные Сериалы
Рет қаралды 1,6 МЛН
Support Vector Machines (SVMs): A friendly introduction
30:58
Serrano.Academy
Рет қаралды 92 М.
Gaussian Mixture Models
17:27
Serrano.Academy
Рет қаралды 75 М.
Linear Regression, Clearly Explained!!!
27:27
StatQuest with Josh Starmer
Рет қаралды 1,4 МЛН
Statistics 101: Multiple Linear Regression, The Very Basics 📈
20:26
Brandon Foltz
Рет қаралды 1,3 МЛН
Linear Regression, Clearly Explained!!!
27:27
StatQuest with Josh Starmer
Рет қаралды 317 М.
A friendly introduction to Deep Learning and Neural Networks
33:20
Serrano.Academy
Рет қаралды 703 М.
Data Analysis 9: Data Regression - Computerphile
16:04
Computerphile
Рет қаралды 52 М.
Linear Regression Using Least Squares Method - Line of Best Fit Equation
15:05
The Organic Chemistry Tutor
Рет қаралды 1,5 МЛН
Decision trees - A friendly introduction
22:23
Serrano.Academy
Рет қаралды 14 М.
Bayesian Linear Regression : Data Science Concepts
16:28
ritvikmath
Рет қаралды 88 М.
Война Семей - ВСЕ СЕРИИ, 1 сезон (серии 1-20)
7:40:31
Семейные Сериалы
Рет қаралды 1,6 МЛН