Luis. I really like your way of teaching. I decided at my 64 start to learn ML, by starting to review my linear algebra. Your way of getting to our heads SVM is the best. Keep doing your hard. Thank you so much for your time. I am just subscribed in your channel !
@suchismitagoswami560910 ай бұрын
The best part of your teaching style is how beautifully you help us to visualize a complex problem. This technique has helped me in many context to simplify and break down a complex problem into smaller problems..
@mohammedhasan65226 жыл бұрын
I sometimes wonder, how can people describe things so simply. Always a big fan and looking forward to seeing more complex things in your style. :)
@kamalkumar-ew8ry6 жыл бұрын
I am beginner to Machine Learning. But able to follow this session 100%. Very rare people can explain the things so easily like you Luis Serrano. Thanks for sharing this video.
@Derfaut6 жыл бұрын
High quality content with visualizations and so easy to understand. Thank you!
@atikfaysal4264 жыл бұрын
You're the best teacher I have found on KZbin. You explain so intuitively. I wish to get more videos from you.
@chakrapani_nallam5 жыл бұрын
The best teacher if we want to learn "how the machines learn".I have watched many of your videos and suggesting them to newbies.
@omarhammouche48315 жыл бұрын
you're the best teacher
@tonakkie6356 жыл бұрын
Again a great lecture Luis. Especially very nice for beginners. I forwarded you video to my daughter who just had a tough course on statistics. Keep up the great work👍. Thanks Ton
@julienbonin5 жыл бұрын
You video's are awesome! I love how structured and prepared you are, yet you keep it simple! You rock!
@maheshBasavaraju8 ай бұрын
Your explanation is almost like an elementary school teacher. regression is addng and subtracting to slope and y-intercept. couldn't get easier than this. great!
@neuromorphing99336 жыл бұрын
Luis has an awesome talent to explain complicated things such that even kids can follow and understand. Good job !
@riffaxelerator72993 жыл бұрын
Even adults can follow and understand too!
@OzScout664 жыл бұрын
One word..... BRILLIANT!
@ruudhermans42435 жыл бұрын
Number 1 video on linear regression I have seen so far on youtue. It makes what sounds complex, easy to understand.
@FarizDarari Жыл бұрын
One of the BEST linear regression tutorials, many thanks!!!
@pushkarparanjpe5 жыл бұрын
Love this style of teaching!
@subrata66663 жыл бұрын
Your videos explanations visualizations are just addictive
@jochoniahnzomo59374 жыл бұрын
Things have never been so in clear my mind. I love your method of teaching
@luisbermudez70006 жыл бұрын
Really good! Thought it would be too simplified and abstracted, but no. I can code this up. More please!!
@rajkumarc67595 жыл бұрын
Thanks Luis, I am truly benefiting from your lessons, you are making these concepts very easy to understand. Have already started to view your playlists especially the ML and maths... Continue the good work!!!!
@abhijeetsnaik3 жыл бұрын
best part is I understood complex Concept very easily.. !! Thanks a lot.. I am fan of this channel.
@peregudovoleg3 жыл бұрын
Fresh and intuitive explanation. Thank you.
@121Pal5 жыл бұрын
Very simple yet powerful video. You have a great gift for teaching.
@spicecandy52486 жыл бұрын
Excellent Luis!! Thanx!! impressive way of explaining complex things for making understanding easy n trivial
@muskankhaneja95124 жыл бұрын
Sir, It is so good to learn from your videos. Complicated things such simplified! Thank you.
@neelkamal33573 ай бұрын
Wow man , my mind was just blown away now
@NikeJustDoItBeaverton4 жыл бұрын
This is called right / write from scratch ... Great and Simple .. Amazing
@ignaciosanchezgendriz1457 Жыл бұрын
Really good Luis, thanks for sharing the way you see ML 🎉
@senthilmuruganr2344 ай бұрын
Excellent presentation sir
@HypnosisBear3 жыл бұрын
I'm extremely lucky to find this channel. This is a god level explanation, thx sooo much. 🙏😎😎😎👍👍👍👍
@AlexPrabhakaran5 жыл бұрын
Simple and powerful explanation. Thank you Luis for this wonderful video.
@moinulhoque21604 жыл бұрын
No doubt!! You are the best. We all lost in math equation, rather than visualizing it.
@user-bz7fj1fk2m Жыл бұрын
10QUVM for all your zeal and valuable presentation!!!
@himanshudalai10285 жыл бұрын
Beautiful & Extra-ordinary explanation !! Thank You LUIS.
@arkanasays3 жыл бұрын
Fabulous explanation and awesome graphics. Please do post more videos on ML algorithms, you explain them so clearly.
@victorrodas43575 жыл бұрын
Muchas Gracias Luis. A ti si te entiendo.
@soajack6 жыл бұрын
Another great video of @Luis Serrano !!! Great !!!
@kanokyusuki5 жыл бұрын
Thank you so much Luis! This has been really helpful.
@rajeshvarma21622 жыл бұрын
After watching this tutorial, I became a big fan of yours.
@changshenglism3 жыл бұрын
feel easy to understand the algorithm! many thanks!!
@agentNirmites4 жыл бұрын
Great teacher, Thank you very much.
@felixvadan60736 жыл бұрын
Really great stuff. Please continue making these videos.
@frankpimiskern6 жыл бұрын
Holy Smokes thank you Luis! Clear and concise. Thank You!
@AndrewReeman_RemD3 жыл бұрын
Great videos and such clear explanations. Thank you for creating these
@noorhashem79 ай бұрын
Love these explanations! What tool do you use for these wonderful animations?
@koushikdas27552 жыл бұрын
Great. Content.... Well explained...thanks so much
@wookotech42165 жыл бұрын
Thank You! You made it very simple and clear!
@MarcelTndl4 жыл бұрын
Muy bueno Luis, ya lo estoy probando en Go . Gracias !!!
@EliezerTseytkin5 жыл бұрын
Simple and brilliant! Thank you!
@carlodavid73606 жыл бұрын
Thanks @Luis Serrano
@SerranoAcademy6 жыл бұрын
Thanks for watching!
@carlodavid73606 жыл бұрын
@@SerranoAcademy can you do friendly introduction to GANs?
@SerranoAcademy6 жыл бұрын
@@carlodavid7360 Great idea! It's one of the things I've been looking at, trying to understand them more clearly these days...
@RahulRageshRSquare6 жыл бұрын
Gans! Please!
@soniaardila6 жыл бұрын
Very friendly introduction ! Thanks! See you soon in Bogotá!
@SerranoAcademy6 жыл бұрын
Thank you! Definitely, see you soon!
@devidevatha Жыл бұрын
I have an arts background, but I was able to follow your video. ❤🧡 Thanks for uploading. Keep uploading more.
@kskuppu6 жыл бұрын
Superb!! Simple and Best. Keep doing the good work.
@vibekdutta65395 жыл бұрын
ypu are awesome mr.luis
@dtakamalakirthidissanayake97704 жыл бұрын
Thank You. This Is Great!!!
@macknightxu21994 жыл бұрын
should machine learning include back propagation?
@box40able4 жыл бұрын
Hola, me encanta tus vídeos, ¿este vídeo está disponible en español?
@VikramSingh-fl4qe Жыл бұрын
You got a shoutout from one of India's finest Data Science KZbinr Nitish @CampusX, Thank you so much for your very simplified version of datasc
@SerranoAcademy Жыл бұрын
Ohhh thank you! I got a huge bump in subscribers and was trying to figure out where it came from! I just saw Nitish's video, such a kind shout out. I'll thank him, I'm a big fan of him as well.
@pauldmanuel4 жыл бұрын
Luis Simply amazing. One small question? It is true that the linear regression line always passes through the mean of the data points. Why don't we start with the line which passes through the mean of the data points? In this case, we worry about only the slope and we can ignore y-intercept. Does it make any difference? Paul Manuel
@NikeJustDoItBeaverton4 жыл бұрын
That is great trick( rather random line , start at mean) ... Please let me know it worked or improved your model by any means...
@TheSaintsVEVO4 жыл бұрын
How do you extend this to higher dimensions? Is there a recommended video for that?
@kiran0825 жыл бұрын
Great Video
@aujard12365 жыл бұрын
감사합니다. 좋은 영상 입니다. 추천 합니다.
@danellis74436 жыл бұрын
Merry Christmas Luiz, hope you’re good :)
@SerranoAcademy6 жыл бұрын
Thanks Dan, merry christmas to you too!
@RiteshMagreIT6 жыл бұрын
Sir I am doing research in visual speech recognition. Please make a video on visual speech recognition. Your way of explaining is very nice.
@mayankshah11236 жыл бұрын
Nice video Sir!!! It would be nice If you could provide the powerpoint presentation file in the description.
@jenyasidyakin80615 жыл бұрын
Thank you, Luis, you are the best teacher. The "square trick" is an official name for that algorithm ? is that an alternetive to error function and gradient dicent ?
@jameseconomy25785 жыл бұрын
Luis, All your videos are so helpful. I have a question though regarding this one. How does the point say "Come closer" (how does the point know it needs to come closer) and how do we know the line is actually closer to the point? Thanks.
@yasmad45536 жыл бұрын
Thx alot So informative
@abdelrahmanwaelhelaly18714 жыл бұрын
These videos are really good, there are a lot of mistakes you made in this chapter in your book , which lead to a very confusing experience. here it's much better.
@fahimachowdhury67803 жыл бұрын
In your first step, Do we take the random line? Or do we draw a line by doing average? How do I know whether a point is below or above to the line and left or right to the y-axis?
@davide82282 жыл бұрын
We just pick a random line. To see if a point is below or above.... it's only a math problem. It's very easy so instead of ask here try for yourself with pen and paper. Make a Cartesian plane and pick a point, writing its coordinates
@sofianeben30285 жыл бұрын
i appreciate it mate
@peeyushkumar88435 жыл бұрын
Sir,how can i know that this is the fitted line??
@atinsood6 жыл бұрын
Luis, much appreciate this and making this so easy to understand. Few questions: 1. Does the line always need to be a straight line or can it be a curve(or is that the reason why it is called linear). 2. If so why/what implications is using a curved line also thanks for the hidden gem explaining beautifully why square error is called square error. 3. when doing the square error, why only consider the vertical distance, why not create squares using horizontal distances
@SerranoAcademy6 жыл бұрын
Thanks! A curved line can be used, for example, one with a polynomial equation (quadratic, cubic), instead of linear. This is called polynomial regression. One can also combine lines to make curved lines, and this is what neural networks do.
@Han-ve8uh3 жыл бұрын
Vertical distances have practical meanings. It's the gap between the predicted value and actual value we care about. In simple linear regression, vertical axis is output and horizontal axis is input. Intuitively, vertical gaps are more important to minimize than horizontal gaps.
@moueshchronicles6 жыл бұрын
Excellent
@farzadfarzadian88275 жыл бұрын
You clever and clear my 5th grade son understands it.
@BharatSharma-ek8sb5 жыл бұрын
Thank you so much . I hope learning from you will make difference in my professional career. I have 2 questions. 1). When I initialize random line , I need to choose some initial numbers for slope and Y intercept . what is best practice for choosing these numbers. 2) using square trick , I need 2 coordinates to find vertical and horizontal distances. I have one coordinate from dataset (x1,y1) but how to find another one (x2,y2) (which i assume satisfies line equation?) .
@Han-ve8uh3 жыл бұрын
For vertical gap, the 2 points have same x. One y comes from the point, the other y comes from prediction from line by substituting into y=mx+b. For horizontal gap, the 2 points have same y. One x comes from the point, the other x is 0 since it's on the y axis.
@dilipgawade96866 жыл бұрын
Hi Sir, Please make videos on Random Forest and Descision Tree
@very_old_dog Жыл бұрын
I'm wondering if dependency is not linear (but lets say, exponential or quadratic) does the solving non linear task would still be called linear regression?
@SerranoAcademy Жыл бұрын
Absolutely! That is called quadratic regression, or polynomial regression if the degree is higher. These models can also be trained in the same way as linear regression (by updating the weights using gradient descent). Note that the higher the degree of the polynomial, the better the fit, but the more prone you are to overfitting, so often when polynomial regression is used, one should also use something like regularization, to prevent overfitting.
@very_old_dog Жыл бұрын
@@SerranoAcademy got, thx so much. Perhaps that could be a topic for one of the next video ;)
@SerranoAcademy Жыл бұрын
@@very_old_dog Great idea! i've been wanting to make a video on polynomial regression for a while, but something else always comes up...
@scherwinn5 жыл бұрын
Clever great!
@sintwelve5 жыл бұрын
Please make a book so I can put you properly in my reference! Or is there another way for me to do so?
@SerranoAcademy5 жыл бұрын
Thanks! A book is coming in a few months, but in the meantime you can reference the video. I’ll make the announcement when it’s out
@koreaorang23516 жыл бұрын
Thanks!!
@joaquingrezmansilla86384 жыл бұрын
hello Luis, i like the way you teach. Tendrás este video en español? vi el del cluster analisis y me ayudó mucho para mi tesis de magíster...
@SerranoAcademy4 жыл бұрын
Gracias Joaquin! No tengo exactamente el mismo video en espanol, pero casi igual, con regresion lineal. Aca esta: kzbin.info/www/bejne/gp3MfqOcgtmde9E
@huojinchowdhury39333 жыл бұрын
I am little bit confused here Say, when first point say come closer it goes closer to it. Again when second point says come closer it goes towards it. If the third point is way more far from previous two point, then line will be go far way from first two points to be closer to third point. That means, data with more outlier, line will be never near maximum points but it will remain besides outliers. Is it something like while line moving towards a point, it will consider one point at a time? Or considers all other points towards which it moves already and the current point?
@Han-ve8uh3 жыл бұрын
This video is showing stochastic gradient descent where each update only considers 1 point. You can consider more than 1 point too (mini-batch GD) or even all the points in the data (GD), which is the most accurate way of updating weights and biases. The geometric interpretation he gives here is exactly the same as the usual gradient descent we see from other sources (just different by constant factors). If we want to consider more points, then the update for both slope and y-intercept will consider the mean of the current operations on vertical/horizontal gaps. Assuming the line updates by looking at points randomly, each point should get seen the same number of times and after many epochs of seeing all points (you can consider 1 epoch as seeing 1 point, or 1 epoch as seeing all points), the line should get better. The issue you mentioned of line not getting updated to a better position and always staying beside outliers should not happen unless the points you use to update the line are always the same outliers.
@saliyari4 жыл бұрын
Hi, What do you use for your animations? I wanna make some slides for my students (now that everything is online) but I don't have much of an experience with apps that could make a nice animation like you have here.
@SerranoAcademy4 жыл бұрын
Hi Saleh, thanks for your question! I use keynote for the animations, and iMovie for the editing.
@saliyari4 жыл бұрын
@@SerranoAcademy Thanks a lot. Kudos to you for posting high quality material and making it available to the public. Also, I asked the same question on your homepage. Please ignore that message. Thanks again.
@QuantaCompassAnalytics8 ай бұрын
Luis, I really liked the explanation of pseudo code, 😊 Thankyou for connecting on LinkedIn ❤
@ayman001B6 жыл бұрын
Where can I actually code the algorithm and visualise it ? and Thank you for succiding at explaining something my teatchers failed at.
@SerranoAcademy6 жыл бұрын
Thanks! I suggest coding it in numpy (python). You can also find packages like scikit-learn, which already have implemented it, so you don't need to hard code it.
@weekoo91896 жыл бұрын
Yo! Great Video!
@aigaurav50246 жыл бұрын
Thanku sir
@thisismrsanjay2 жыл бұрын
you should be adding more videos in youtube really different then rest
@priyasearcher6 жыл бұрын
understood sir
@macknightxu21994 жыл бұрын
pick one random point, later pick another random point?
@testme20262 жыл бұрын
Those three videos go very well with the book, woudl be great to do a video for each chapter like those. . Thank you again
@SerranoAcademy2 жыл бұрын
Thanks! Great idea! I’m actually working on a decisión trees one now. There are a few other videos for chapters in the book, like a naive Bayes video, so hopefully soon I can get them all there.
@testme20262 жыл бұрын
@@SerranoAcademy love it, thank you so much
@entropiclips4 жыл бұрын
grat vid
@haydarsalah29683 жыл бұрын
its great but i think it need more math besides visualization