Lyapunov Exponents & Sensitive Dependence on Initial Conditions

  Рет қаралды 10,110

Dr. Shane Ross

Dr. Shane Ross

Күн бұрын

Пікірлер: 24
@megan7258
@megan7258 3 жыл бұрын
this is so well explained! as a high school student, this video makes me so excited to study this at uni
@ProfessorRoss
@ProfessorRoss 3 жыл бұрын
That's excellent, Megan! I also got interested in nonlinear dynamics and chaos in high school, mostly by reading the book "Chaos" by James Gleick www.amazon.com/Chaos-Making-Science-James-Gleick/dp/0143113453
@PunmasterSTP
@PunmasterSTP Жыл бұрын
How have your studies been going?
@megan7258
@megan7258 Жыл бұрын
@@PunmasterSTP great! I’m really enjoying all my classes. Especially seeing the applications of calculus in my physics courses
@PunmasterSTP
@PunmasterSTP Жыл бұрын
@@megan7258 That's awesome!
@DoNotChooseBlank
@DoNotChooseBlank Жыл бұрын
6 months ago he will be a giga chad in 7 years@@megan7258
@CEO_Bogwater
@CEO_Bogwater Жыл бұрын
I've been using your playlist to study for my mechanics final for the last few days now. I heard you talking about how unreliable the weather is and thought to myself, "Yeah, it's hard to predict the weather at my university too!" Only to find out that you are a professor at the school I go to! That was a fun realization! Hello from VT Physics lol.
@ProfessorRoss
@ProfessorRoss Жыл бұрын
Ha! That's pretty funny. I like the name EigenVecna -- are you a Stranger Things fan? If you want to take the course, I'll be teaching it this fall 2023 as AOE 4514 / ESM 4114 Nonlinear Dynamics and Chaos. I'll probably be using a different book, so it won't be the same.
@pajeetsingh
@pajeetsingh Жыл бұрын
Simple explanation. Might be because you have better understanding than others.
@ProfessorRoss
@ProfessorRoss Жыл бұрын
Thank you. I hope so. Lyapunov exponents are sick.
@PunmasterSTP
@PunmasterSTP Жыл бұрын
Lyapunov? More like "Loving these lectures, all!" 👍
@brendawilliams8062
@brendawilliams8062 2 жыл бұрын
Thankyou
@victoraguiar3489
@victoraguiar3489 2 ай бұрын
Grreat lecture, Shane. I can't really catch how you obtained the 10^10, though. I am assuming that lambda and *a* are constants. Cheers,
@404QAMAR
@404QAMAR Жыл бұрын
Dear Prof I required MATLAB code for the Henon map for plotting it's maximum Lyapunov exponents in two and three dimensions
@aidancoletta7153
@aidancoletta7153 4 ай бұрын
New to this idea and im tryna understand better: when you say that the lyapunov exponent is .9 for the Lorenz system, I'm a little confused. If you're closer to the trivial equilibrium point of the Lorenz system at , shouldn't the lyapunov exponent be negative for some initial conditions?
@ProfessorRoss
@ProfessorRoss 4 ай бұрын
Great question. The Lyapunov exponent is independent of initial location; it's determined from following any initial condition for long enough. Even when you're near the equilibrium point at , the dynamics will still take the state away from zipping around, and eventually going onto the strange attractor, where it will wander chaotically forever. (I'm assuming we're talking about a parameter r in the regime where the strange attractor exists).
@smftrsddvjiou6443
@smftrsddvjiou6443 2 ай бұрын
What I always wounder, for lamda(t) so exponent as function of time, it should becomde negative at some point, as the trajectories come closer together. Or ? So this concept is really only valid for initial delta almost zero ?
@jagg_Z
@jagg_Z Жыл бұрын
thanks so much
@ProfessorRoss
@ProfessorRoss Жыл бұрын
You're welcome!
@natorgas
@natorgas Жыл бұрын
Hello, is it possible to calculate the largest lyapunov exponent for a system that is chaotic but doesn't have an attractor?
@ProfessorRoss
@ProfessorRoss Жыл бұрын
Excellent question. The answer is yes. For example, the dynamics of the solar system, or any set of bodies interacting by gravity, can be chaotic, and if you calculate the spectrum of the Lyapunov exponents, the largest will be positive, but there is no attractor- motion can go on forever, but never settles down to a lower dimensional surface in the state space.
@natorgas
@natorgas Жыл бұрын
@@ProfessorRoss Thanks for the answer! So that means that it will keep growing forever? Since there are no boundaries in phase space(which before were the attractor)?
@brendawilliams8062
@brendawilliams8062 2 жыл бұрын
That
@DoNotChooseBlank
@DoNotChooseBlank Жыл бұрын
this looks like math in a whole new level 💀
Logistic Map, Part 1: Period Doubling Route to Chaos
17:18
Dr. Shane Ross
Рет қаралды 12 М.
Thank you Santa
00:13
Nadir Show
Рет қаралды 53 МЛН
Quilt Challenge, No Skills, Just Luck#Funnyfamily #Partygames #Funny
00:32
Family Games Media
Рет қаралды 46 МЛН
Одну кружечку 😂❤️
00:12
Денис Кукояка
Рет қаралды 2,4 МЛН
Lyapunov Exponents - Dynamical Systems | Lecture 31
16:54
Jason Bramburger
Рет қаралды 6 М.
Limit Cycles, Part 1: Introduction & Examples
22:08
Dr. Shane Ross
Рет қаралды 21 М.
Nonlinear Systems: Fixed Points, Linearization, & Stability
29:08
Dr. Shane Ross
Рет қаралды 17 М.
Classifying Fixed Points of 2D Systems
24:17
Dr. Shane Ross
Рет қаралды 9 М.
Chaos, Poincare sections and Lyapunov exponent
13:47
Physics with Andrés Aragoneses
Рет қаралды 9 М.
Poincaré Maps - Dynamical Systems | Lecture 28
31:34
Jason Bramburger
Рет қаралды 4,9 М.
Lyapunov's Fractal (that Lyapunov knew nothing about) #SoME2
24:42
Chaos Theory: the language of (in)stability
12:37
Gonkee
Рет қаралды 573 М.
I never understood why you can't go faster than light - until now!
16:40
FloatHeadPhysics
Рет қаралды 4,2 МЛН