M.I.T. Integration Bee Question

  Рет қаралды 70,558

Tom Rocks Maths

Tom Rocks Maths

Күн бұрын

Пікірлер: 100
@rob876
@rob876 2 жыл бұрын
At 7:40 you could have made the substitution (u + 2)/√3 = w to arrive at the answer quicker using partial fractions.
@TomRocksMaths
@TomRocksMaths 2 жыл бұрын
Yes nice spot!
@kenroyadams2762
@kenroyadams2762 2 жыл бұрын
Absolutely fantastic! Thank you so much for taking the time and effort to do this integral.
@TomRocksMaths
@TomRocksMaths 2 жыл бұрын
you're very welcome :)
@polychromaa
@polychromaa 2 жыл бұрын
Alternate method is hyperbolic weierstrass substitution; t=tanh(x/2)
@TomRocksMaths
@TomRocksMaths 2 жыл бұрын
nice!
@gurkiratsingh7tha993
@gurkiratsingh7tha993 2 жыл бұрын
When you are done with the u sub then you can use partial fractions to solve the rest, I know that u^2+4u+1 is not Factorable over rationals but it is factorable over reals, i.e. u^2+4u+1 = (u+2+√3)(u-√3+2)
@TomRocksMaths
@TomRocksMaths 2 жыл бұрын
nice!
@chenkuanmin
@chenkuanmin 2 жыл бұрын
yes , my thinking is also this
@gurkiratsingh7tha993
@gurkiratsingh7tha993 2 жыл бұрын
@@TomRocksMaths thanks
@giuseppepalazzo6022
@giuseppepalazzo6022 2 жыл бұрын
Didn't know Machine Gun Kelly was that good at math
@TomRocksMaths
@TomRocksMaths 2 жыл бұрын
Side hustle
@a_k__
@a_k__ 2 жыл бұрын
I really like the style of your teaching. I always feel I learned something when I watch your videos. I think it would be very useful if you can make a video about different part of Math as a subject. Kind of like a roadmap that shows different parts of math and how it is used in different industries. I think your unique style of teaching is great for it
@YawnGod
@YawnGod 2 жыл бұрын
You NSA? CIA?
@NazriB
@NazriB 2 жыл бұрын
Lies again? Most Irresistible PES
@yugiohsc
@yugiohsc 2 жыл бұрын
I love watching the integration bee! It’s the one sport i enjoy watching
@TomRocksMaths
@TomRocksMaths 2 жыл бұрын
olympics next?
@itsreeah2663
@itsreeah2663 2 жыл бұрын
Happy New Year! Have a mathematical one
@hugolindholm4889
@hugolindholm4889 2 жыл бұрын
Why not factorize it into (u+2-sqrt(3))*(u+2+sqrt(3))? Then do partial fraction decomposition?
@timothyaugustine7093
@timothyaugustine7093 2 жыл бұрын
Exactly. That'll not require any hyperbolic trigonometric functions.
@Zonnymaka
@Zonnymaka 2 жыл бұрын
I guess that wouldn't have been fancy enough
@franolich3
@franolich3 2 жыл бұрын
Simpler method similar to what others have suggested: J = Integral [ 0 to infinity : dx / (2 + cosh(x)) ] = Integral [ 0 to infinity : 2e^x dx / (e^2x + 4e^x + 1) ] The roots of (y^2 + 4y + 1) are y = -2 +/- sqrt(3) J = Integral [ 0 to infinity : 2e^x dx / (e^x + 2 - sqrt(3)) (e^x + 2 + sqrt(3)) ] Let u = e^x + 2 => du = e^x dx J = Integral [ 3 to infinity : 2 du / (u - sqrt(3))(u + sqrt(3)) ] By partial fractions: J = (1/sqrt(3)) * Integral [ 3 to infinity : 1/(u - sqrt(3)) - 1/(u + sqrt(3)) du ] = (1/sqrt(3)) * [ 3 to infinity : ln( (u - sqrt(3)) / (u + sqrt(3) ) ] = (1/sqrt(3)) * [ ln(1) - ln( (3 - sqrt(3)) / (3 + sqrt(3) ) ] = (1/sqrt(3)) * ln( (sqrt(3) + 1) / (sqrt(3) - 1) )
@TomRocksMaths
@TomRocksMaths 2 жыл бұрын
nice!
@ghostek7792
@ghostek7792 2 жыл бұрын
WTF@!@! that app is insane i've never seen it. i'm about to start integral calculus for software engineering and knowing there are such tools to assist in learning is going to give me peace of mind when i encounter problems that I may struggle on. the break down on the app is so thorough as well i love it! thx for the video
@TomRocksMaths
@TomRocksMaths 2 жыл бұрын
glad you find it useful!
@IbraHermoso
@IbraHermoso 2 жыл бұрын
Hi Tom, happy new year!!
@TomRocksMaths
@TomRocksMaths 2 жыл бұрын
and to you too!
@owen7185
@owen7185 2 жыл бұрын
I love the symmetry in the answer
@ThatWeirdCat
@ThatWeirdCat 2 жыл бұрын
i didn't like math because i can't get past 70% in every exam i take in my school, but i like this dude. 10/10 🔥
@smellund
@smellund 2 жыл бұрын
I don’t even begin to understand integrals but still watched the whole thing, good video
@TomRocksMaths
@TomRocksMaths 2 жыл бұрын
as long as you had fun :)
@angelodiavolo3915
@angelodiavolo3915 2 жыл бұрын
Yesterday I studied integrals for the first time. Today I watch this video. I have surprised understood more then I thought I would hahah
@TomRocksMaths
@TomRocksMaths 2 жыл бұрын
Great job :)
@ranpancake
@ranpancake 2 жыл бұрын
yet another banger ! [also, love the shirt :)]
@TomRocksMaths
@TomRocksMaths 2 жыл бұрын
thanks!!
@ArjunBhanap
@ArjunBhanap 2 жыл бұрын
Great question!
@TomRocksMaths
@TomRocksMaths 2 жыл бұрын
Try some other questions from the M.I.T. Integration Bee as selected by Tom in this FREE Maple Learn worksheet: learn.maplesoft.com/?d=LTBSKOBSBSLIESPFETLUHHCMINPMMIGQELHHCNCUGIBTDLEGIFNMNHPHOGBJBMNONGEPGFITMMKJMKKRHQBQCSLTMPALJSBNKULU
@iTeerRex
@iTeerRex 2 жыл бұрын
It’s one of those problems with 2 stars at the end of the chapter, and after banging your head against the wall for some time. You get the answer with a negative sign 😂 Happy new year everybody, and may this omen be lifted soon.
@Carlos-vn4ec
@Carlos-vn4ec 2 жыл бұрын
this is so buck wild. I forgot how cool doing integrals can be
@TomRocksMaths
@TomRocksMaths 2 жыл бұрын
you said it
@rossg9361
@rossg9361 2 жыл бұрын
Beautifully explained, but even as a decent amateur mathematician I would struggle to know where to start. The way in?
@TomRocksMaths
@TomRocksMaths 2 жыл бұрын
I think replacing cosh by it's definition in terms of exponentials was really helpful as then it starts to look like a polynomial
@adrianh1307
@adrianh1307 2 жыл бұрын
1:51 "is given here by this function" it's not a function, it's a number
@chanddd2
@chanddd2 2 жыл бұрын
wtf did I just watch...? I'm a lawyer
@TomRocksMaths
@TomRocksMaths 2 жыл бұрын
As long as you had fun :)
@d314159
@d314159 2 жыл бұрын
Took over a minute to do it in my head, including some checking. Getting old ...
@mathunt1130
@mathunt1130 2 жыл бұрын
Why not directly use t=tanh(x/2)? People are taught a similar trick when you have trig functions, and it works when you have hyperbolic functions as well.
@TomRocksMaths
@TomRocksMaths 2 жыл бұрын
Yes this would also have worked.
@purim_sakamoto
@purim_sakamoto 2 жыл бұрын
おー お手本のような式変形 こういうの訓練しときたいなあ
@gujjalamohanmanjunath3156
@gujjalamohanmanjunath3156 2 жыл бұрын
Try jee advanced integration questions if you are perfect in them then you are perfect in integration
@Genus-Homo_Species-Sapiens
@Genus-Homo_Species-Sapiens 3 ай бұрын
For ur kind info, even JEE Adv AIR 1, 2020 lost in MIT Integration Bee semi finals 2024 MIT ki baat ho rahi h, unko gyan dene ki jarurat nhi h IMO Gold Medalists h waha,,JEE Adv se tougher que solve kr k baithe h wo
@sergiolucas38
@sergiolucas38 2 жыл бұрын
great video :) just a curiosity, from what i see, most people dont use to rationalize expressions, why is that so? for example, that sqrt3 at the end. thanks.
@TomRocksMaths
@TomRocksMaths 2 жыл бұрын
I should have done this really, but hopefully you can see the two answers are equivalent.
@kevincardenas6629
@kevincardenas6629 2 жыл бұрын
Hi Tom I really enjoy your videos, I recall once seeing a video where you solve an optimization problem that was related to entropy, there was this sum over some probabilities but I've looked over your channel and can't really find it :( Do you remember doing a video like that? If so it would help me a lot you could direct me to the video!
@TomRocksMaths
@TomRocksMaths 2 жыл бұрын
Oooooo this might be one of the questions I did in an exam on Flammable Maths - maybe try here: kzbin.info/www/bejne/mIG0iWyti6l7ibs
@danielbenton5817
@danielbenton5817 2 жыл бұрын
Why don't you take the minus sign out and sub in tanh so you don't need to look any integrals up?
@nitayweksler3051
@nitayweksler3051 2 жыл бұрын
I learned all those tricka in calc1 but we didnt really speak of hyperbollic functions so the coshx=.... is the hardset part for me lol
@ninjaneer0
@ninjaneer0 2 жыл бұрын
This man teaching math looks like a punk rock guitarist with killer tattoos? My attention is grabbed immediately.
@TomRocksMaths
@TomRocksMaths 2 жыл бұрын
If only I had any musical talent...
@drliorsilberman
@drliorsilberman 2 жыл бұрын
Why so complicated? Like any rational function of trig functions, the standard "tangent of half the angle" substitution solves the problem immediately. Let $t = \tanh(x/2)$. Then $dx = \frac{2dt}{1-t^2}$ and $\cosh x = \frac{1+t^2}{1-t^2}$. Making the substitution rewrites our integral as $\int_0^1 {2dt}{3-t^2}$ and this is immediate.
@ytpanda398
@ytpanda398 2 жыл бұрын
sorry I understand your first part just fine, but how is cosh(x) equivalent to [1 + tanh(x/2)^2] / [1-tanh(x/2)^2] ? Thank you in advance
@drliorsilberman
@drliorsilberman 2 жыл бұрын
@@ytpanda398 They aren't "equivalent" -- they are straight up equal. Indeed $t^2 = \frac{e^x+e^{-x}-2}{e^x+e^{-x}+2}$, so $1 + t^2 = 2\frac{e^x+e^{-x}}{e^x+e^{-x}+2}$ and $1-t^2 = \frac{4}{e^x+e^{-x}+2}$. It follows that $\frac{1+t^2}{1-t^2} = \frac{2(e^x+e^{-x})}{4} = \frac{e^x+e^{-x}}{2} = \cosh x$.
@drliorsilberman
@drliorsilberman 2 жыл бұрын
It's the kind of formulas you should know if you want to compete in an integration bee.
@Bee-gp3nq
@Bee-gp3nq 2 жыл бұрын
Approved.
@TomRocksMaths
@TomRocksMaths 2 жыл бұрын
thank you Bee
@superdan2593
@superdan2593 2 жыл бұрын
Hey Tom! Great video! I have special request for you... Would you be able to explain the fluid physics that Adam Savage demonstrated with his gauge blocks on his latest Tested video. You could skip directly to 24:17 for an example.
@TomRocksMaths
@TomRocksMaths 2 жыл бұрын
I'll check it out - thanks for the tip!
@anawilliams1332
@anawilliams1332 2 жыл бұрын
Hey 👋. First of all i love your videos, they are littteraly amazing. But i didnt really get some of this video. Are functions like cosh and arcoth related to exponential functions or trigonometric ones. Im kind of confuced and feel like a bit stupid. Im in year 12 so i think its something we havent covered yet but im really curious now
@TomRocksMaths
@TomRocksMaths 2 жыл бұрын
They are related to both trigonometric and exponential functions. You should come across them in Further Maths I believe.
@anawilliams1332
@anawilliams1332 2 жыл бұрын
@@TomRocksMaths just covered them a couple days ago, will need to rewatch this video now :)
@eashanshenai4980
@eashanshenai4980 2 жыл бұрын
6:24 why is the denominator to (u+2)² root 3 and not just 3?
@eashanshenai4980
@eashanshenai4980 2 жыл бұрын
@Khaled Mohammed oh I see, thanks!
@morehave2417
@morehave2417 2 жыл бұрын
hi man, try to use partial fractions method and you gonna end up with ( ln( (e^x+2-root_3) / e^x2+2+root_3 ) ) / root_3 from 0 to infinity, then sub in the result it will be ( ln(2+root_3) ) / root_3
@jannien4129
@jannien4129 2 жыл бұрын
how can you say (u+2)/sqrt3 = coshy ???
@TomRocksMaths
@TomRocksMaths 2 жыл бұрын
This is the substitution I am using to try to simplify the integral
@KenStarkey
@KenStarkey 2 жыл бұрын
I feel like expanding out the hyperbolic solution to the ln function is an unnecessary step. Just because Maple did it does not make it a more natural solution.
@TomRocksMaths
@TomRocksMaths 2 жыл бұрын
I agree it isn't needed to get the answer, but the purpose of using it was to show the solutions are equivalent as you say. It also helps if someone does it using partial fractions as then they will get a log also.
@leif1075
@leif1075 2 жыл бұрын
@@TomRocksMaths Thanks for sharing. O really hooeyou can respond to my other comment in the new year when you get a chance. Thanks very much
@cxkeisdelusional
@cxkeisdelusional 2 жыл бұрын
why is xqc teaching math
@TomRocksMaths
@TomRocksMaths 2 жыл бұрын
that's a new one
@trillionman2105
@trillionman2105 2 жыл бұрын
Shine x
@TomRocksMaths
@TomRocksMaths 2 жыл бұрын
yep
@andrewgonzales1359
@andrewgonzales1359 2 жыл бұрын
If this guy went to Oxford, why does he have to use a calculator?
@amritkumarpatel5717
@amritkumarpatel5717 2 жыл бұрын
here
@solarine-7354
@solarine-7354 2 жыл бұрын
Machine gun Kelly solve math…
@TomRocksMaths
@TomRocksMaths 2 жыл бұрын
side project
@meiwinspoi5080
@meiwinspoi5080 2 жыл бұрын
tom is un-neccesaarily complicating the calculations. treat the equation in denominator as a quadratic in e^x and use partial fractions to get a neat expression. the lower bound will be sqrt 3 and upper bound infinity. the integral is standard integral and for upper bound apply limit t tends to infinity of ln (t-1)/(t+1) which is zero and get your final answer. fewer steps and neat. btw the app sucks as an ipad app. why would any one write on a paper and take a picture and compute. so ipad unfriendly. one should be able to directly write on the app and get results.
@NeverTalkToCops1
@NeverTalkToCops1 2 жыл бұрын
A puzzle to solve while you are in the hospital. KZbin math puzzles have little merit. The value would be in thoroughly understanding what integration is and how to apply it in various endeavors. Otherwise, you're just some 7 year old grinding away on Rubik's Cube, forever.
@romanemul1
@romanemul1 2 жыл бұрын
Let the sin shine.
@TomRocksMaths
@TomRocksMaths 2 жыл бұрын
i stand by shine
@mohammadalkousa2856
@mohammadalkousa2856 Жыл бұрын
Great! Recently it was published a book about MIT integration bee, under the title " MIT Integration Bee, Solutions of Qualifying Tests from 2010 to 2023" You can simply find it!
@Zeusbeer
@Zeusbeer 2 жыл бұрын
??????????????????????????????? Why not just use partial fractions, its not that hard since it is a linear term
@beachboardfan9544
@beachboardfan9544 2 жыл бұрын
Seems like a terrible problem, seems to require a ton of pre-existing knowledge to solve.
@TomRocksMaths
@TomRocksMaths 2 жыл бұрын
You need to know hyperbolic functions, but aside from that it is just a couple of clever substitutions.
@beachboardfan9544
@beachboardfan9544 2 жыл бұрын
@@TomRocksMaths How do you know the substitutions?
@two697
@two697 2 жыл бұрын
Not really. The only part people might not remember is the integral of cosech
@nitinankareddy5538
@nitinankareddy5538 2 жыл бұрын
When you are done with the u sub then you can use partial fractions to solve the rest, I know that u^2+4u+1 is not Factorable over rationals but it is factorable over reals, i.e. u^2+4u+1 = (u+2+√3)(u-√3+2)
@TomRocksMaths
@TomRocksMaths 2 жыл бұрын
nice!
Math Olympiad Question with @ThePhysicsMathsWizard
15:10
Tom Rocks Maths
Рет қаралды 63 М.
Oxford Calculus: Heat Equation Derivation
25:20
Tom Rocks Maths
Рет қаралды 60 М.
Lazy days…
00:24
Anwar Jibawi
Рет қаралды 9 МЛН
Cat mode and a glass of water #family #humor #fun
00:22
Kotiki_Z
Рет қаралды 23 МЛН
2023 MIT Integration Bee - Finals
28:09
MIT Integration Bee
Рет қаралды 2,1 МЛН
MIT integration bee qualifier test
46:21
blackpenredpen
Рет қаралды 359 М.
MIT 2006 Integration Bee
3:13:35
Keith Winstein
Рет қаралды 3,9 МЛН
Oxford Calculus: Solving Homogeneous First Order Differential Equations
24:42
integrate with the FLOOR and CEILING | MIT Integration Bee 2023
13:58
Feynman's Integral Trick with Math With Bad Drawings
15:35
Tom Rocks Maths
Рет қаралды 187 М.
2024 MIT Integration Bee - Finals
1:09:25
MIT Integration Bee
Рет қаралды 738 М.
Oxford Calculus: Taylor's Theorem Explained with Examples and Derivation
26:14
Lazy days…
00:24
Anwar Jibawi
Рет қаралды 9 МЛН