At 7:40 you could have made the substitution (u + 2)/√3 = w to arrive at the answer quicker using partial fractions.
@TomRocksMaths2 жыл бұрын
Yes nice spot!
@kenroyadams27622 жыл бұрын
Absolutely fantastic! Thank you so much for taking the time and effort to do this integral.
@TomRocksMaths2 жыл бұрын
you're very welcome :)
@polychromaa2 жыл бұрын
Alternate method is hyperbolic weierstrass substitution; t=tanh(x/2)
@TomRocksMaths2 жыл бұрын
nice!
@gurkiratsingh7tha9932 жыл бұрын
When you are done with the u sub then you can use partial fractions to solve the rest, I know that u^2+4u+1 is not Factorable over rationals but it is factorable over reals, i.e. u^2+4u+1 = (u+2+√3)(u-√3+2)
@TomRocksMaths2 жыл бұрын
nice!
@chenkuanmin2 жыл бұрын
yes , my thinking is also this
@gurkiratsingh7tha9932 жыл бұрын
@@TomRocksMaths thanks
@giuseppepalazzo60222 жыл бұрын
Didn't know Machine Gun Kelly was that good at math
@TomRocksMaths2 жыл бұрын
Side hustle
@a_k__2 жыл бұрын
I really like the style of your teaching. I always feel I learned something when I watch your videos. I think it would be very useful if you can make a video about different part of Math as a subject. Kind of like a roadmap that shows different parts of math and how it is used in different industries. I think your unique style of teaching is great for it
@YawnGod2 жыл бұрын
You NSA? CIA?
@NazriB2 жыл бұрын
Lies again? Most Irresistible PES
@yugiohsc2 жыл бұрын
I love watching the integration bee! It’s the one sport i enjoy watching
@TomRocksMaths2 жыл бұрын
olympics next?
@itsreeah26632 жыл бұрын
Happy New Year! Have a mathematical one
@hugolindholm48892 жыл бұрын
Why not factorize it into (u+2-sqrt(3))*(u+2+sqrt(3))? Then do partial fraction decomposition?
@timothyaugustine70932 жыл бұрын
Exactly. That'll not require any hyperbolic trigonometric functions.
@Zonnymaka2 жыл бұрын
I guess that wouldn't have been fancy enough
@franolich32 жыл бұрын
Simpler method similar to what others have suggested: J = Integral [ 0 to infinity : dx / (2 + cosh(x)) ] = Integral [ 0 to infinity : 2e^x dx / (e^2x + 4e^x + 1) ] The roots of (y^2 + 4y + 1) are y = -2 +/- sqrt(3) J = Integral [ 0 to infinity : 2e^x dx / (e^x + 2 - sqrt(3)) (e^x + 2 + sqrt(3)) ] Let u = e^x + 2 => du = e^x dx J = Integral [ 3 to infinity : 2 du / (u - sqrt(3))(u + sqrt(3)) ] By partial fractions: J = (1/sqrt(3)) * Integral [ 3 to infinity : 1/(u - sqrt(3)) - 1/(u + sqrt(3)) du ] = (1/sqrt(3)) * [ 3 to infinity : ln( (u - sqrt(3)) / (u + sqrt(3) ) ] = (1/sqrt(3)) * [ ln(1) - ln( (3 - sqrt(3)) / (3 + sqrt(3) ) ] = (1/sqrt(3)) * ln( (sqrt(3) + 1) / (sqrt(3) - 1) )
@TomRocksMaths2 жыл бұрын
nice!
@ghostek77922 жыл бұрын
WTF@!@! that app is insane i've never seen it. i'm about to start integral calculus for software engineering and knowing there are such tools to assist in learning is going to give me peace of mind when i encounter problems that I may struggle on. the break down on the app is so thorough as well i love it! thx for the video
@TomRocksMaths2 жыл бұрын
glad you find it useful!
@IbraHermoso2 жыл бұрын
Hi Tom, happy new year!!
@TomRocksMaths2 жыл бұрын
and to you too!
@owen71852 жыл бұрын
I love the symmetry in the answer
@ThatWeirdCat2 жыл бұрын
i didn't like math because i can't get past 70% in every exam i take in my school, but i like this dude. 10/10 🔥
@smellund2 жыл бұрын
I don’t even begin to understand integrals but still watched the whole thing, good video
@TomRocksMaths2 жыл бұрын
as long as you had fun :)
@angelodiavolo39152 жыл бұрын
Yesterday I studied integrals for the first time. Today I watch this video. I have surprised understood more then I thought I would hahah
@TomRocksMaths2 жыл бұрын
Great job :)
@ranpancake2 жыл бұрын
yet another banger ! [also, love the shirt :)]
@TomRocksMaths2 жыл бұрын
thanks!!
@ArjunBhanap2 жыл бұрын
Great question!
@TomRocksMaths2 жыл бұрын
Try some other questions from the M.I.T. Integration Bee as selected by Tom in this FREE Maple Learn worksheet: learn.maplesoft.com/?d=LTBSKOBSBSLIESPFETLUHHCMINPMMIGQELHHCNCUGIBTDLEGIFNMNHPHOGBJBMNONGEPGFITMMKJMKKRHQBQCSLTMPALJSBNKULU
@iTeerRex2 жыл бұрын
It’s one of those problems with 2 stars at the end of the chapter, and after banging your head against the wall for some time. You get the answer with a negative sign 😂 Happy new year everybody, and may this omen be lifted soon.
@Carlos-vn4ec2 жыл бұрын
this is so buck wild. I forgot how cool doing integrals can be
@TomRocksMaths2 жыл бұрын
you said it
@rossg93612 жыл бұрын
Beautifully explained, but even as a decent amateur mathematician I would struggle to know where to start. The way in?
@TomRocksMaths2 жыл бұрын
I think replacing cosh by it's definition in terms of exponentials was really helpful as then it starts to look like a polynomial
@adrianh13072 жыл бұрын
1:51 "is given here by this function" it's not a function, it's a number
@chanddd22 жыл бұрын
wtf did I just watch...? I'm a lawyer
@TomRocksMaths2 жыл бұрын
As long as you had fun :)
@d3141592 жыл бұрын
Took over a minute to do it in my head, including some checking. Getting old ...
@mathunt11302 жыл бұрын
Why not directly use t=tanh(x/2)? People are taught a similar trick when you have trig functions, and it works when you have hyperbolic functions as well.
@TomRocksMaths2 жыл бұрын
Yes this would also have worked.
@purim_sakamoto2 жыл бұрын
おー お手本のような式変形 こういうの訓練しときたいなあ
@gujjalamohanmanjunath31562 жыл бұрын
Try jee advanced integration questions if you are perfect in them then you are perfect in integration
@Genus-Homo_Species-Sapiens3 ай бұрын
For ur kind info, even JEE Adv AIR 1, 2020 lost in MIT Integration Bee semi finals 2024 MIT ki baat ho rahi h, unko gyan dene ki jarurat nhi h IMO Gold Medalists h waha,,JEE Adv se tougher que solve kr k baithe h wo
@sergiolucas382 жыл бұрын
great video :) just a curiosity, from what i see, most people dont use to rationalize expressions, why is that so? for example, that sqrt3 at the end. thanks.
@TomRocksMaths2 жыл бұрын
I should have done this really, but hopefully you can see the two answers are equivalent.
@kevincardenas66292 жыл бұрын
Hi Tom I really enjoy your videos, I recall once seeing a video where you solve an optimization problem that was related to entropy, there was this sum over some probabilities but I've looked over your channel and can't really find it :( Do you remember doing a video like that? If so it would help me a lot you could direct me to the video!
@TomRocksMaths2 жыл бұрын
Oooooo this might be one of the questions I did in an exam on Flammable Maths - maybe try here: kzbin.info/www/bejne/mIG0iWyti6l7ibs
@danielbenton58172 жыл бұрын
Why don't you take the minus sign out and sub in tanh so you don't need to look any integrals up?
@nitayweksler30512 жыл бұрын
I learned all those tricka in calc1 but we didnt really speak of hyperbollic functions so the coshx=.... is the hardset part for me lol
@ninjaneer02 жыл бұрын
This man teaching math looks like a punk rock guitarist with killer tattoos? My attention is grabbed immediately.
@TomRocksMaths2 жыл бұрын
If only I had any musical talent...
@drliorsilberman2 жыл бұрын
Why so complicated? Like any rational function of trig functions, the standard "tangent of half the angle" substitution solves the problem immediately. Let $t = \tanh(x/2)$. Then $dx = \frac{2dt}{1-t^2}$ and $\cosh x = \frac{1+t^2}{1-t^2}$. Making the substitution rewrites our integral as $\int_0^1 {2dt}{3-t^2}$ and this is immediate.
@ytpanda3982 жыл бұрын
sorry I understand your first part just fine, but how is cosh(x) equivalent to [1 + tanh(x/2)^2] / [1-tanh(x/2)^2] ? Thank you in advance
@drliorsilberman2 жыл бұрын
@@ytpanda398 They aren't "equivalent" -- they are straight up equal. Indeed $t^2 = \frac{e^x+e^{-x}-2}{e^x+e^{-x}+2}$, so $1 + t^2 = 2\frac{e^x+e^{-x}}{e^x+e^{-x}+2}$ and $1-t^2 = \frac{4}{e^x+e^{-x}+2}$. It follows that $\frac{1+t^2}{1-t^2} = \frac{2(e^x+e^{-x})}{4} = \frac{e^x+e^{-x}}{2} = \cosh x$.
@drliorsilberman2 жыл бұрын
It's the kind of formulas you should know if you want to compete in an integration bee.
@Bee-gp3nq2 жыл бұрын
Approved.
@TomRocksMaths2 жыл бұрын
thank you Bee
@superdan25932 жыл бұрын
Hey Tom! Great video! I have special request for you... Would you be able to explain the fluid physics that Adam Savage demonstrated with his gauge blocks on his latest Tested video. You could skip directly to 24:17 for an example.
@TomRocksMaths2 жыл бұрын
I'll check it out - thanks for the tip!
@anawilliams13322 жыл бұрын
Hey 👋. First of all i love your videos, they are littteraly amazing. But i didnt really get some of this video. Are functions like cosh and arcoth related to exponential functions or trigonometric ones. Im kind of confuced and feel like a bit stupid. Im in year 12 so i think its something we havent covered yet but im really curious now
@TomRocksMaths2 жыл бұрын
They are related to both trigonometric and exponential functions. You should come across them in Further Maths I believe.
@anawilliams13322 жыл бұрын
@@TomRocksMaths just covered them a couple days ago, will need to rewatch this video now :)
@eashanshenai49802 жыл бұрын
6:24 why is the denominator to (u+2)² root 3 and not just 3?
@eashanshenai49802 жыл бұрын
@Khaled Mohammed oh I see, thanks!
@morehave24172 жыл бұрын
hi man, try to use partial fractions method and you gonna end up with ( ln( (e^x+2-root_3) / e^x2+2+root_3 ) ) / root_3 from 0 to infinity, then sub in the result it will be ( ln(2+root_3) ) / root_3
@jannien41292 жыл бұрын
how can you say (u+2)/sqrt3 = coshy ???
@TomRocksMaths2 жыл бұрын
This is the substitution I am using to try to simplify the integral
@KenStarkey2 жыл бұрын
I feel like expanding out the hyperbolic solution to the ln function is an unnecessary step. Just because Maple did it does not make it a more natural solution.
@TomRocksMaths2 жыл бұрын
I agree it isn't needed to get the answer, but the purpose of using it was to show the solutions are equivalent as you say. It also helps if someone does it using partial fractions as then they will get a log also.
@leif10752 жыл бұрын
@@TomRocksMaths Thanks for sharing. O really hooeyou can respond to my other comment in the new year when you get a chance. Thanks very much
@cxkeisdelusional2 жыл бұрын
why is xqc teaching math
@TomRocksMaths2 жыл бұрын
that's a new one
@trillionman21052 жыл бұрын
Shine x
@TomRocksMaths2 жыл бұрын
yep
@andrewgonzales13592 жыл бұрын
If this guy went to Oxford, why does he have to use a calculator?
@amritkumarpatel57172 жыл бұрын
here
@solarine-73542 жыл бұрын
Machine gun Kelly solve math…
@TomRocksMaths2 жыл бұрын
side project
@meiwinspoi50802 жыл бұрын
tom is un-neccesaarily complicating the calculations. treat the equation in denominator as a quadratic in e^x and use partial fractions to get a neat expression. the lower bound will be sqrt 3 and upper bound infinity. the integral is standard integral and for upper bound apply limit t tends to infinity of ln (t-1)/(t+1) which is zero and get your final answer. fewer steps and neat. btw the app sucks as an ipad app. why would any one write on a paper and take a picture and compute. so ipad unfriendly. one should be able to directly write on the app and get results.
@NeverTalkToCops12 жыл бұрын
A puzzle to solve while you are in the hospital. KZbin math puzzles have little merit. The value would be in thoroughly understanding what integration is and how to apply it in various endeavors. Otherwise, you're just some 7 year old grinding away on Rubik's Cube, forever.
@romanemul12 жыл бұрын
Let the sin shine.
@TomRocksMaths2 жыл бұрын
i stand by shine
@mohammadalkousa2856 Жыл бұрын
Great! Recently it was published a book about MIT integration bee, under the title " MIT Integration Bee, Solutions of Qualifying Tests from 2010 to 2023" You can simply find it!
@Zeusbeer2 жыл бұрын
??????????????????????????????? Why not just use partial fractions, its not that hard since it is a linear term
@beachboardfan95442 жыл бұрын
Seems like a terrible problem, seems to require a ton of pre-existing knowledge to solve.
@TomRocksMaths2 жыл бұрын
You need to know hyperbolic functions, but aside from that it is just a couple of clever substitutions.
@beachboardfan95442 жыл бұрын
@@TomRocksMaths How do you know the substitutions?
@two6972 жыл бұрын
Not really. The only part people might not remember is the integral of cosech
@nitinankareddy55382 жыл бұрын
When you are done with the u sub then you can use partial fractions to solve the rest, I know that u^2+4u+1 is not Factorable over rationals but it is factorable over reals, i.e. u^2+4u+1 = (u+2+√3)(u-√3+2)