Machine Learning | Semi-Supervised Learning

  ะ ะตั‚ า›ะฐั€ะฐะปะดั‹ 12,978

RANJI RAJ

RANJI RAJ

ะšาฏะฝ ะฑาฑั€ั‹ะฝ

Semi-supervised learning is an approach to machine learning that combines a small amount of labeled data with a large amount of unlabeled data during training. Semi-supervised learning falls between unsupervised learning and supervised learning. It is a special instance of weak supervision. #SSL #DataScience #MachineLearning
=====================================================
๐Ÿ๐‘ท๐’š๐’•๐’‰๐’๐’ ๐‘บ๐’Œ๐’Š๐’๐’ ๐‘บ๐’†๐’“๐’Š๐’†๐’” ๐Ÿ‘‰ โ€ข Skill Series - Python
๐Ÿ™๐‘ซ๐’†๐’†๐’‘ ๐‘ณ๐’†๐’‚๐’“๐’๐’Š๐’๐’ˆ ๐Ÿ‘‰ โ€ข Deep Learning
๐Ÿฆพ๐‘ด๐’‚๐’„๐’‰๐’Š๐’๐’† ๐‘ณ๐’†๐’‚๐’“๐’๐’Š๐’๐’ˆ ๐Ÿ‘‰ โ€ข Machine Learning
๐Ÿค–๐‘จ๐’“๐’•๐’Š๐’‡๐’Š๐’„๐’Š๐’‚๐’ ๐‘ฐ๐’๐’•๐’†๐’๐’๐’Š๐’ˆ๐’†๐’๐’„๐’† ๐Ÿ‘‰ โ€ข Artificial Intelligenc...
โ˜๏ธ๐‘ช๐’๐’๐’–๐’… ๐‘ช๐’๐’Ž๐’‘๐’–๐’•๐’Š๐’๐’ˆ ๐Ÿ‘‰ โ€ข Cloud Computing Tutorials
๐Ÿ“ถ๐‘พ๐’Š๐’“๐’†๐’๐’†๐’”๐’” ๐‘ป๐’†๐’„๐’‰๐’๐’๐’๐’๐’ˆ๐’š ๐Ÿ‘‰ โ€ข Wireless Technology Tu...
๐Ÿ› ๏ธ๐‘ซ๐’‚๐’•๐’‚ ๐‘ด๐’Š๐’๐’Š๐’๐’ˆ ๐Ÿ‘‰ โ€ข Data Mining & Business...
โš™๏ธ๐‘บ๐’Š๐’Ž๐’–๐’๐’‚๐’•๐’Š๐’๐’ ๐‘ด๐’๐’…๐’†๐’๐’Š๐’๐’ˆ ๐Ÿ‘‰ โ€ข Simulation Modeling Tu...
๐Ÿ˜๐‘ฉ๐’Š๐’ˆ ๐‘ซ๐’‚๐’•๐’‚ ๐Ÿ‘‰ โ€ข Big Data Anaytics
โ›“๏ธ๐‘ฉ๐’๐’๐’„๐’Œ๐’„๐’‰๐’‚๐’Š๐’ ๐‘ป๐’†๐’„๐’‰๐’๐’๐’๐’๐’ˆ๐’š ๐Ÿ‘‰ โ€ข Blockchain Technology
๐Ÿ’ก๐‘ฐ๐‘ถ๐‘ป ๐Ÿ‘‰ โ€ข Internet Of Things
๐“•๐“ธ๐“ต๐“ต๐“ธ๐”€ ๐“ถ๐“ฎ ๐“ธ๐“ท ๐“˜๐“ท๐“ผ๐“ฝ๐“ช๐“ฐ๐“ป๐“ช๐“ถ ๐Ÿ‘‰ / adhyapakh
๐“ฅ๐“ฒ๐“ผ๐“ฒ๐“ฝ ๐“ถ๐”‚ ๐“Ÿ๐“ป๐“ธ๐“ฏ๐“ฒ๐“ต๐“ฎ ๐Ÿ‘‰ / reng99
(Feel free to give or ask for any recommendation)
๐“ข๐“พ๐“น๐“น๐“ธ๐“ป๐“ฝ ๐“ถ๐”‚ ๐”€๐“ธ๐“ป๐“ด ๐“ธ๐“ท ๐“Ÿ๐“ช๐“ฝ๐“ป๐“ฎ๐“ธ๐“ท ๐Ÿ‘‰ / ranjiraj
๐“–๐“ฒ๐“ฝ๐“—๐“พ๐“ซ๐Ÿ‘‰ github.com/ran...

ะŸั–ะบั–ั€ะปะตั€: 5
@msktheabbasi4818
@msktheabbasi4818 2 ะฐะน ะฑาฑั€ั‹ะฝ
Thank u sir๐Ÿ‘
@mabasadailycode1781
@mabasadailycode1781 3 ะถั‹ะป ะฑาฑั€ั‹ะฝ
As usual, thank you for such clear explanations sir๐Ÿ™Œ. If possible I would greatly appreciate it if you are in a position to help me understand these kinds of scenarios: Assuming I have 10000 labeled images then 1000 unlabeled images, SSL would it be an ideal approach or just go with supervised learning since the labeled samples seem to suffice for training a classifier? Also in a multi-classification problem what if I have a lot of unlabeled data that I believe they are related to some particular classes and not have any possibility of being related to other individual classes from the labeled data. For instance I have 3 classes Dogs, Cats and horses but I have a lot of unlabeled data related to only cats and dogs. Wonโ€™t this imbalance have a negative effect in training my classifier?
@mabasadailycode1781
@mabasadailycode1781 3 ะถั‹ะป ะฑาฑั€ั‹ะฝ
As usual, thank you for such clear explanations sir. If possible I would greatly appreciate it if you are in a position to help me understand these kinds of scenarios: Assuming I have 10000 labeled images then 1000 unlabeled images, SSL would it be an ideal approach or just go with supervised learning since the labeled samples seem to suffice for training a classifier? Also in a multi-classification problem what if I have a lot of unlabeled data that I believe they are related to some particular classes and not have any possibility of being related to other individual classes from the labeled data. For instance I have 3 classes Dogs, Cats and horses but I have a lot of unlabeled data related to only cats and dogs. Wonโ€™t this imbalance have a negative effect in training my classifier?
@peddarapuchandrasekhar8230
@peddarapuchandrasekhar8230 2 ะถั‹ะป ะฑาฑั€ั‹ะฝ
Sir what is label data clarify my dobt
@mabasadailycode1781
@mabasadailycode1781 3 ะถั‹ะป ะฑาฑั€ั‹ะฝ
As usual, thank you for such clear explanations sir๐Ÿ™Œ. If possible I would greatly appreciate it if you are in a position to help me understand these kinds of scenarios: Assuming I have 10000 labeled images then 1000 unlabeled images, SSL would it be an ideal approach or just go with supervised learning since the labeled samples seem to suffice for training a classifier? Also in a multi-classification problem what if I have a lot of unlabeled data that I believe they are related to some particular classes and not have any possibility of being related to other individual classes from the labeled data. For instance I have 3 classes Dogs, Cats and horses but I have a lot of unlabeled data related to only cats and dogs. Wonโ€™t this imbalance have a negative effect in training my classifier?
Machine Learning | Safe Semi-Supervised Learning
14:43
RANJI RAJ
ะ ะตั‚ า›ะฐั€ะฐะปะดั‹ 872
Machine Learning | Semi-Supervised SVM (S3VM/TSVM)
17:15
RANJI RAJ
ะ ะตั‚ า›ะฐั€ะฐะปะดั‹ 2,5 ะœ.
#JasonDeruloTV // Funny #GotPermissionToPost From @SofiManassyan  #SlowLow
00:18
Jason Derulo
ะ ะตั‚ า›ะฐั€ะฐะปะดั‹ 14 ะœะ›ะ
Tuna ๐Ÿฃ โ€‹โ @patrickzeinali โ€‹โ @ChefRush
00:48
albert_cancook
ะ ะตั‚ า›ะฐั€ะฐะปะดั‹ 148 ะœะ›ะ
ๅฐไธ‘ๆ•™่ฎญๅ่›‹ #ๅฐไธ‘ #ๅคฉไฝฟ #shorts
00:49
ๅฅฝไบบๅฐไธ‘
ะ ะตั‚ า›ะฐั€ะฐะปะดั‹ 54 ะœะ›ะ
ไบบๆ˜ฏไธ่ƒฝๅšๅˆฐๅ—๏ผŸ#็ซๅฝฑๅฟ่€… #ๅฎถไบบ  #ไฝๅŠฉ
00:20
็ซๅฝฑๅฟ่€…ไธ€ๅฎถ
ะ ะตั‚ า›ะฐั€ะฐะปะดั‹ 20 ะœะ›ะ
What is Semi-supervised Learning? Explanation with Examples
9:45
Dr. Dibya Jyoti Bora
ะ ะตั‚ า›ะฐั€ะฐะปะดั‹ 9 ะœ.
What is Cross Validation and its types?
18:15
Krish Naik
ะ ะตั‚ า›ะฐั€ะฐะปะดั‹ 235 ะœ.
But what is a neural network? | Deep learning chapter 1
18:40
3Blue1Brown
ะ ะตั‚ า›ะฐั€ะฐะปะดั‹ 18 ะœะ›ะ
Supervised & Unsupervised Machine Learning
11:46
Steve Brunton
ะ ะตั‚ า›ะฐั€ะฐะปะดั‹ 29 ะœ.
Machine Learning will kill your career in 2025, learn this instead!
23:01
Towards AGI
ะ ะตั‚ า›ะฐั€ะฐะปะดั‹ 61 ะœ.
Machine Learning | Active Learning
9:24
RANJI RAJ
ะ ะตั‚ า›ะฐั€ะฐะปะดั‹ 23 ะœ.
How I'd learn ML in 2025 (if I could start over)
16:24
Boris Meinardus
ะ ะตั‚ า›ะฐั€ะฐะปะดั‹ 235 ะœ.
Supervised vs. Unsupervised Learning
7:08
IBM Technology
ะ ะตั‚ า›ะฐั€ะฐะปะดั‹ 223 ะœ.
AI Machine Learning Roadmap: Self Study AI!
8:45
Exaltitude
ะ ะตั‚ า›ะฐั€ะฐะปะดั‹ 261 ะœ.
All Machine Learning Concepts Explained in 22 Minutes
22:22
Infinite Codes
ะ ะตั‚ า›ะฐั€ะฐะปะดั‹ 105 ะœ.
#JasonDeruloTV // Funny #GotPermissionToPost From @SofiManassyan  #SlowLow
00:18
Jason Derulo
ะ ะตั‚ า›ะฐั€ะฐะปะดั‹ 14 ะœะ›ะ