Machine Learning using Boosting Regression in JASP free software | Supervised learning

  Рет қаралды 8,479

Vahid Aryadoust, PhD

Vahid Aryadoust, PhD

Күн бұрын

Пікірлер: 21
@haroldasraz
@haroldasraz 9 ай бұрын
Thank you for an excellent presentation. JASP has become extremely impressive. The team and community behind Jamovi and JASP are making a statistically significant software of a gem.
@haroldasraz
@haroldasraz 8 ай бұрын
Can you specify which subjects the model should use? Let's say I trained my model and collected approximately 20 subjects, and now I want to see how well the model predicts disease for this sample whilst being trained on the prior data set.
@TravelerTriumphs
@TravelerTriumphs Жыл бұрын
I am moving from SPSS to JASP, and will be using this for my quantitative analysis callses to my MA sociology students, found your presentation really useful.
@xiaoyulan8662
@xiaoyulan8662 2 жыл бұрын
Really amazing presentation and clear interpretation! Thank you. is there any chance of sharing the ppt slides you employed in the presentation?
@ZZU04
@ZZU04 3 жыл бұрын
Sir i have watched your video and totally agreed with you that there is no rule of thumb.. According to my littlr knowledge what i usually intrepret as a statistician is i compare the MAE OR MSE sets of different input combination and look minimal value.
@uzairbaig8372
@uzairbaig8372 2 жыл бұрын
How can we use prediction algorithm for boosting regression in latest JASP version
@hemantz1001
@hemantz1001 2 жыл бұрын
Can you upload a video on random forest ML technique on JASP platform
@buraktiras93
@buraktiras93 2 жыл бұрын
Really good presentation, thank you for that! My question is, let's say we completed the training and testing part and saw that we have a model that has high accuracy. How can we deploy it to make further predictions with new inputs?
@VahidAryadoust
@VahidAryadoust 2 жыл бұрын
Models cannot be deployed from JASP, as far as I know. It is an area for improvement, which you can bring up with the software developer.
@haroldasraz
@haroldasraz 9 ай бұрын
Once you have trained a model. How can you test it on new test data?
@panpanyang8938
@panpanyang8938 3 жыл бұрын
Quite brilliant!
@黃威綸-w9p
@黃威綸-w9p 3 жыл бұрын
Really useful, but how can we apply the model into new data prediction even we do not have the correct answer. thanks your time.
@VahidAryadoust
@VahidAryadoust 3 жыл бұрын
Sorry could you rephrase the question? I have difficulty understanding it.
@黃威綸-w9p
@黃威綸-w9p 3 жыл бұрын
@@VahidAryadoust Sorry for unclear question. For example, we use dataset A generate a machine learning model B in JASP. Is it possible to use model B to do prediction in other dataset while we do not have correct answer.
@VahidAryadoust
@VahidAryadoust 3 жыл бұрын
You should feed the new dataset as your left-out (testing) data. Simply create a new variable in the data (call it test-train). Test = 1 and train =2. Replace the test data with your new data and run the analysis again.
@uzairbaig8372
@uzairbaig8372 2 жыл бұрын
I did not understand. can u please share a short clip. It will be very much helpful for me. Thanks
@Niculuzzu
@Niculuzzu 3 жыл бұрын
Spettacolare
@fernandojosearaujodasilva1918
@fernandojosearaujodasilva1918 3 жыл бұрын
Brilliant
@kamilbaszczynski8649
@kamilbaszczynski8649 3 жыл бұрын
If I may, I have a question. Do continious predictors need to be on similar standardized or normalized scale in order to compare their relative influence on the model?
@VahidAryadoust
@VahidAryadoust 3 жыл бұрын
I suggest you standardize the variables if they are not on the same scale. For example, standardize them on mean = 0 and SD = 1, or other ways.
@kamilbaszczynski8649
@kamilbaszczynski8649 3 жыл бұрын
@@VahidAryadoust Thank You for the answer and what about bi- and multi-nomial qualitative data? If I use variables measurer on different types of scales. You would also recommend unification? So for example min-max conversion of all variables?
这是自救的好办法 #路飞#海贼王
00:43
路飞与唐舞桐
Рет қаралды 108 МЛН
REAL MAN 🤣💪🏻
00:35
Kan Andrey
Рет қаралды 6 МЛН
КОГДА К БАТЕ ПРИШЕЛ ДРУГ😂#shorts
00:59
BATEK_OFFICIAL
Рет қаралды 7 МЛН
I tricked MrBeast into giving me his channel
00:58
Jesser
Рет қаралды 28 МЛН
Rasch model analysis in free software Jamovi
26:55
Vahid Aryadoust, PhD
Рет қаралды 17 М.
JASP 0 13 1 Tutorial -  Multiple Regression
44:20
Rene Nob
Рет қаралды 6 М.
Latent class cluster analysis with free software Jamovi
20:31
Vahid Aryadoust, PhD
Рет қаралды 13 М.
Linear Regression in Python - Full Project for Beginners
50:52
Alejandro AO - Software & Ai
Рет қаралды 30 М.
Structural equation modeling in free software JASP
39:24
Vahid Aryadoust, PhD
Рет қаралды 31 М.
Feature Selection Using R | Machine Learning Models using Boruta Package
16:28
JASP Tutorial #13: Linear Regression with 1 Predictor Variable
9:58
Mixture Rasch model analysis with free software Jamovi
29:00
Vahid Aryadoust, PhD
Рет қаралды 6 М.
Normality check, skewness, and kurtosis in free software JASP with references
16:24
这是自救的好办法 #路飞#海贼王
00:43
路飞与唐舞桐
Рет қаралды 108 МЛН