Machine Learning with 10 Data Points - Or an Intro to PyMC3

  Рет қаралды 20,893

ritvikmath

ritvikmath

Күн бұрын

Пікірлер
@ravink
@ravink Жыл бұрын
I'm a core dev on PyMC. This is a great video. For newer watchers know that PyMC3 has been superseded by PyMC v5 and its got so many cool new things
@lashlarue7924
@lashlarue7924 Жыл бұрын
Thank you, Sir! 🫡
@stanleynwanekezie5355
@stanleynwanekezie5355 Жыл бұрын
Hi, I am working on a model update involving pymc. I have a function, say func, which an given array, produces a float or -inf. Func used to be wrapped within a pymc.stochastic decorator before it was deprecated. I understand that func serves to confirm whether a draw during sampling of a tensorvariable satisfies requirements so that only draws that do are retained in the posterior. Now, I am trying to use the pymc.DensityDist or pymc.Potential but because a TensorVariable (not an array) is passed to func, it is unable to perform inequality checks. I have used the eval method of the tensorvariable but that has also failed to work. Please help
@ravink
@ravink Жыл бұрын
@@stanleynwanekezie5355 The best place to ask is the pymc discourse. All the core devs are there and your question I believe has been asked already so there may already be a solution!
@cameronwebb9851
@cameronwebb9851 Жыл бұрын
Dude your video is amazing. So my clarity and simplicity around complex topic. I really like how you keep re explaining basic terms as you cover them because it really helps following through into more advanced areas
@brycedavis5674
@brycedavis5674 3 жыл бұрын
Wow I really hope you dive into pymc3, I always had difficulty on understanding programming the priors. You're the best! This video is great. Sending love from South Korea :)
@Mewgu_studio
@Mewgu_studio Жыл бұрын
This tutorial really ties everything together. Thank you.
@sunilmathew2914
@sunilmathew2914 3 жыл бұрын
You teach so well! Please keep making videos!
@ritvikmath
@ritvikmath 3 жыл бұрын
Thank you! Will do!
@xxshogunflames
@xxshogunflames 3 жыл бұрын
SUPER good video, I have been practicing on jupyter notebooks for data science and it has taken time but these videos make me feel like im standing on the shoulders of giants. THANKS
@ritvikmath
@ritvikmath 3 жыл бұрын
Glad I could help!
@umamiplaygroundnyc7331
@umamiplaygroundnyc7331 Жыл бұрын
Amazing job! So clear & easy to understand
@111dogger
@111dogger 3 жыл бұрын
Very informative. Thanks!
@ritvikmath
@ritvikmath 3 жыл бұрын
Of course! Thanks for watching
@pgbpro20
@pgbpro20 3 жыл бұрын
Amazing as always! Just enough to wet the appetite for more PyMC3 learning. It looks like I may be using this library really soon.
@jiayiwu4101
@jiayiwu4101 Жыл бұрын
2:45 question - would linear regression give you distribution too? consider the confidence intervals of the parameter estimates.
@matakos22
@matakos22 2 жыл бұрын
Very nice video, well-organized and neatly explained concepts. One thing I would like to see at the end is some discussion on how would you use the posterior distributions, given that the true values are not obvious to infer from those at all :)
@ResilientFighter
@ResilientFighter 3 жыл бұрын
Very nicely done!
@ritvikmath
@ritvikmath 3 жыл бұрын
Thanks :)
@user-or7ji5hv8y
@user-or7ji5hv8y 3 жыл бұрын
More video like this on Bayesian approaches.
@ritvikmath
@ritvikmath 3 жыл бұрын
Haha you'll probably be happy with Wednesday's video :) stay tuned
@MeshRoun
@MeshRoun 2 жыл бұрын
I'm subscribing, your explanation was on point!
@jfndfiunskj5299
@jfndfiunskj5299 2 жыл бұрын
Great stuff. You've won a new subscriber.
@EdoardoMarcora
@EdoardoMarcora 3 жыл бұрын
Nicely done! Very clear, concise yet informative. One thing missing from intro tutorials like this one is a real world example, with a a bigger dataset and more variables. Can pymc3 run on gpus, or computer clusters, etc or should I look elsewhere (pyro, tensor flow.probability)? Just giving an idea for future videos! Keep up the good work
@ritvikmath
@ritvikmath 3 жыл бұрын
Valid point and great suggestion! Thank you
@ravink
@ravink Жыл бұрын
Yes. PyMC can run on GPU TPU backend using Jax. Source I'm core dev of the library
@dwivedys
@dwivedys Жыл бұрын
Brilliant - I loved it
@mosca-tse-tse
@mosca-tse-tse 3 жыл бұрын
Fantastic material. Thanks.
@MrMoore0312
@MrMoore0312 3 жыл бұрын
Great video, very well explained!! I would love to see you 💪 on another equation and distribution, something just a little harder like Ytrue = X1^3 - X2^2 - X3 Y = Ytrue + binomial error distribution Or something weird like that lol Thanks for another great lesson!
@ritvikmath
@ritvikmath 3 жыл бұрын
Hey great suggestion! Thanks
@ppybmjc
@ppybmjc 3 жыл бұрын
What are the advantages of this approach over use of the confidence intervals calculated in a linear model (e.g. as output by statsmodels?)
@axscs1178
@axscs1178 3 жыл бұрын
Confidence intervals don't actually give you the probability of a parameter being inside them. They instead tell you that, over repeated sampling, say 95% of the time the true value will be contained in those intervals. Bayesian approach gives you intervals with the probability of a parameter being inside them
@zsoltczinege3014
@zsoltczinege3014 3 жыл бұрын
What's the advantage of Bayesian analysis compared to calculating confidence intervals with linear regression and bootstrap?
@ritvikmath
@ritvikmath 3 жыл бұрын
This is a great question and I'm going to have to give the unsatisfying answer that I'll probably address this in a future video
@zsoltczinege3014
@zsoltczinege3014 3 жыл бұрын
@@ritvikmath That's totally satisfying, as long as we get that video. :) Thank you!
@renaspersonal9854
@renaspersonal9854 Жыл бұрын
Ur videos r awesome thanks for adding in theory!
@ritvikmath
@ritvikmath Жыл бұрын
Glad you like them!
@FabulusIdiomas
@FabulusIdiomas 2 жыл бұрын
In other words, the MC in PyMC3 is for Markov Chain eh?
@qiguosun129
@qiguosun129 3 жыл бұрын
So cool!
@komuna5984
@komuna5984 2 жыл бұрын
Thanks a lot for this video and the corresponding codes in GitHub! May Allah bless you!!!
@rajns8643
@rajns8643 Жыл бұрын
Can somebody pls tell where did we use the observed values of y in determining the posterior distribution? Is it perhaps used in determining just the normalizing factor in the Bayes theorem...?
@lulzimi
@lulzimi 2 жыл бұрын
@ritvikmath Do you have any book recommendations to learn PyMC3?
@cbasile22
@cbasile22 3 жыл бұрын
Hi ritvikmath, great videos, this one , the gibbs, metrolopis, the ridge/lasso!! Do you have any suggestions to understand how to best do a prediction in the bayesian way? And to get a credible set of the prediction, we have credible set for each of the parameters, if I use their means I can make predictions , if I were to use a bit lower than their mean I can produce a sightly different value , so there many possible prediction ranges for a given x input. I would appreciate any suggestions, thanks !!!! I could not find a good resource for that.
@user-or7ji5hv8y
@user-or7ji5hv8y 3 жыл бұрын
Could we not simply use p-value to gauge our confidence of our point estimate? Or is there additional benefit from being able to see the full distribution?
@ArgumentumAdHominem
@ArgumentumAdHominem Жыл бұрын
Great video. I'm just shocked about the runtime. 2 whole minutes. So, the mcmc needs to run a few thousand iterations, where for each iteration it should sample a few random numbers from standard distributions. I would have expected this to be done in milliseconds. What am I missing?
@nb9797
@nb9797 3 жыл бұрын
good teacher
@stanleynwanekezie5355
@stanleynwanekezie5355 Жыл бұрын
Hi, I am working on a model update involving pymc. I have a function, say func, which an given array, produces a float or -inf. Func used to be wrapped within a pymc.stochastic decorator before it was deprecated. I understand that func serves to confirm whether a draw during sampling of a tensorvariable satisfies requirements so that only draws that do are retained in the posterior. Now, I am trying to use the pymc.DensityDist or pymc.Potential but because a TensorVariable (not an array) is passed to func, it is unable to perform inequality checks. I have used the eval method of the tensorvariable but that has also failed to work. Please help.
@user-or7ji5hv8y
@user-or7ji5hv8y 3 жыл бұрын
how come you did not plot a histogram of the posterior, given that you drew samples from it?
@musiknation7218
@musiknation7218 Жыл бұрын
Make some videos for Bayesian prior selection
@user-or7ji5hv8y
@user-or7ji5hv8y 3 жыл бұрын
Do you prefer PyMC3 over TensorFlow Probability?
@robertwest6244
@robertwest6244 3 жыл бұрын
Does Pymc3 do the same type of thing that RJags does? Does it “send” the model to another language? Or is it doing all of the mcmc sampling itself?
@cornagojar
@cornagojar 3 жыл бұрын
pymc3 is a builtin library of python, not an interface like rjags. Moreover rjags only allows gibbs sampling (I think) while pymc3 allows hmc
@thenayancat8802
@thenayancat8802 3 жыл бұрын
Posterior median would probably give a better estimate of the mode of the distribution of sigma
@ryan_chew97
@ryan_chew97 3 жыл бұрын
whats the reasoning why mcmc is better for smaller datasets?
@junkbingo4482
@junkbingo4482 3 жыл бұрын
i'm not sure it's a good idea to model 10 data with a model; the test theory is really different ( and just says ' watch out')
Bayesian Time Series : Time Series Talk
7:12
ritvikmath
Рет қаралды 36 М.
Жездуха 41-серия
36:26
Million Show
Рет қаралды 5 МЛН
Jaidarman TOP / Жоғары лига-2023 / Жекпе-жек 1-ТУР / 1-топ
1:30:54
I'VE MADE A CUTE FLYING LOLLIPOP FOR MY KID #SHORTS
0:48
A Plus School
Рет қаралды 20 МЛН
[41] Intro to Probabilistic Programming with PyMC (Austin Rochford)
1:10:07
The Bayesians are Coming to Time Series
53:17
AICamp
Рет қаралды 27 М.
Interpretable Machine Learning - Shapley - SHAP (SHapley Additive exPlanation) Values
30:27
Statistical Learning and Data Science
Рет қаралды 2,2 М.
Thompson Sampling : Data Science Concepts
13:16
ritvikmath
Рет қаралды 38 М.
The Bayesian Workflow: Building a COVID-19 Model, Part 1 (Thomas Wiecki)
35:17
Жездуха 41-серия
36:26
Million Show
Рет қаралды 5 МЛН