the man, the myth himself. has done invaluable work in making things accessible just by his teachings alone. bravo!
@psesh3629 ай бұрын
Classes meaning his channel?
@whowhy90239 ай бұрын
@@psesh362Stanford …
@olhamuzychenko30829 ай бұрын
@@psesh362😅😅😅😅😅😅😅😊😅😊😅😅😊o
@chaithanya43849 ай бұрын
Interview 3:22 what do you think of the future of AGI? 5:20 what are the new niches for founders given the current state of LLMs? 7:15 future of LLM ecosystem (wrt open source, open weights etc)? 9:26 How important is scale (of data, compute etc)? 11:52 what are the current research challenges in LLM? 15:01 what have you learnt from Elon Musk? 20:42 Next chapter in your life? QnA 22:15 Should founders copy Elon? 23:24 feasibility of model composibility, merger? 24:40 LLM for modeling laws of physics? 28:47 trade off between cost and performance of LLM 30:30 open vs closed source models. 32:09 how to make AI more cool? 33:25 Next generation of transformer architecture. 36:04 any advise?
@rpbmpn9 ай бұрын
Great guest, and one of my favorite people in AI. Almost certainly done more than anyone else alive to increase public understanding of LLMs, played a pivotal role at two of the world's most exciting companies, and remains completely humble and just a nice, chill person. Thanks for inviting Andrej to talk, and thanks Andrej for speaking.
@webgpu9 ай бұрын
_huge_ guest, that is 🙂
@PrabinKumarRath-kf1rv9 ай бұрын
This video is so encouraging! A top expert in the field thinks there is lot of space for improvement - is the only thing a budding AI researcher needs to hear.
@johnnypeck9 ай бұрын
Great discussion. It's very reassuring to hear such a leader as Andrej stating his desire for a vibrant "coral reef" ecosystem of companies rather than a few behemoths. Central, closed control of such intelligence amplification is dangerous.
@ashh30519 ай бұрын
Loved his insights on Elon's style. Very insightful.
@sjkba9 ай бұрын
Andrej seems like such a good dude. Great moderation as well.
@guanjuexiang56569 ай бұрын
The Andrej's insights and the audience's questions both exhibit a remarkable depth of understanding in this field!!!
@user_375a829 ай бұрын
Loved Andrej's comments, great presentation all-round.
@johndavidjudeii9 ай бұрын
Let's give a round of applause to the moderator 👏🏼 what a good job!
@ai_outline9 ай бұрын
Andrej Karpathy is an amazing Computer Scientist 🔥 What a genius mind!
@krimdelko9 ай бұрын
"Not to long after that he joined Open AI.." He stayed at Tesla more than five years and built an amazing self driving stack.
@Alex-gc2vo9 ай бұрын
Oh dear boy, 5 years is not long at all.
@panafrican.nation9 ай бұрын
He left OpenAI, went to Tesla, then back to OpenAI
@Nunya-lz9ey9 ай бұрын
@@Alex-gc2voit’s the longest he’s ever spent at a company by 3x and longer than average in tech. Definitely not “shortly” after
@Nunya-lz9ey9 ай бұрын
@@panafrican.nationtherefore 5 years is short?
@saturdaysequalsyouth9 ай бұрын
FSD is still in beta…
@chenlim21659 ай бұрын
Legend. So many nuggets of insight. Thank you Sequoia for sharing!
@philla16909 ай бұрын
Great questions! And thank u Andrej for answering them
@bleacherz75039 ай бұрын
Thanks for sharing with the general public
@Thebentist9 ай бұрын
Crazy to see our future discussed to such a small amount of people who get it while the world flys by worrying about the day to day that simply has no meaning in the grand scheme of things. Thank you for sharing and happy to be a part of this new world as we build. I only wish we could signal the flares to the rest of the world.
@sia.b61849 ай бұрын
Flares are already high and alight, but don't worry to much about it, those that get it will jump on board and be part of the revolution as a creator, user, endorser & supporter. Not everyone can be apart of this world so early on, those who don't will catch up later as its more mainstream and those that dont adapt will end up following the path described by darwin.
@jondor6549 ай бұрын
Good last question , BENEVOLENT AI
@KrisTC9 ай бұрын
Very interesting. I always love to hear what he has to say. Big fan.
@rajdhakad73805 ай бұрын
Damn. Andrej is great as always. But, I also like to thank Stephanie Zhan. She is such a great host.
@RalphDratman8 ай бұрын
I just love this guy. He seems to be a wonderful person, so human, very smart and capable. Recently I have been using several of his github language model repositories. I bought a Linux x86 box and a used NVIDIA RTX 6000, really just to learn about this new field. Andrej has done so much to make this mind-bending technology understandable -- even for an old timer like me. Transformer systems are the first utterly new and commercially viable development in basic computer science since the 1960s. Obviously since then we have acquired amazingly fast CPUs capable of addressing huge amounts of RAM, as well as massive nonvolatile storage. But until these transformer models came along, the fundamental concept of data processing systems had not changed for decades. Although these LLMs are still being implemented within the Von Neumann architecture (augmented by vector arithmetic) they are fundamentally new and different beasts.
@christianropke71616 ай бұрын
It’s still as inspiring to listen to Andrej as it was in 2015.
@omarnomad9 ай бұрын
29:37 “Go after performance first, and then make it cheaper later”
@reza2kn9 ай бұрын
Awesome interview! I LOVE the questions, SO MUCH BETTER than the BS questions that are usually asked of these people about AI.
@tm738279 ай бұрын
Great interview. Great interviewer!
@AndresMilioto9 ай бұрын
Thank you for uploading this to youtube.
@baboothewonderspam9 ай бұрын
High density of quality information - great!
@collins67799 ай бұрын
I could keep listening for hours.
@devsuniversity9 ай бұрын
Hello from Google developers community group from Almaty!
@andriusem9 ай бұрын
You are awesome Andrej !
@brandonsager2239 ай бұрын
Awesome interview!!
@agenticmark9 ай бұрын
Andrej is the new school goat in rl! Love his work
@jayhu60759 ай бұрын
The true potential of startups lies in creating a healthy ecosystem that benefits humanity, rather than succumbing to the allure of big tech companies. Creativity is the driving force in this space, and by staying independent, startups can preserve their passion and innovative spirit.
@alanzhu70539 ай бұрын
His brain clocks too fast that his mouth cannot keep up 😂
@Ventcis9 ай бұрын
Put the sound speed on 0.75, it will be fine 😅
@leadgenjay9 ай бұрын
GREAT VIDEO! We should all remember data quality trumps quantity when training AI.
@RadMountainDad9 ай бұрын
What a genuine dude.
@andrewdunbar8289 ай бұрын
This was very very exceptionally extremely unique. The only one of its kind. One of one. Almost special.
@Alice80009 ай бұрын
GOOD QUESTIONS LADY. I like dat. Nice.
@lucascurtolo87109 ай бұрын
At 26:30 a Cybertruck drives by in the background 😅
@UxJoy9 ай бұрын
The secret to OpenAI's motivation was ... chocolate 🧐. Noted. Thanks Andrej! Step 1: Find a chocolate factory. Step 2: Find space near chocolate factory. Step 3: Connect HVAC vent from chocolate factory floor to office floor. Step 4: Open AI company 🥸
@RaySmith-zg7od9 ай бұрын
Sounds about right
@10x_discovery9 ай бұрын
super humble and modest scientific, all the best insh'Allah Mr @AndrejKarpathy
@u2b839 ай бұрын
8:31 Do bigger models still have this problem, or do we need some kind of "gradient gating" mechanism? Karpathy's discussion highlights a crucial challenge in machine learning and AI development: the problem of catastrophic forgetting or regression, where fine-tuning a model on new data causes it to lose performance on previously learned tasks or datasets. This is a significant issue in continual learning, where the objective is to add new knowledge to a model without losing existing capabilities. Do Bigger Models Still Have This Problem? Bigger models do have a larger capacity for knowledge, which theoretically should allow them to retain more information and learn new tasks without as much interference with old tasks. However, the fundamental problem of catastrophic forgetting is not entirely mitigated by simply increasing model size. While larger models can store more information and might exhibit a more extended "grace period" before significant forgetting occurs, they are still prone to this issue when continually learning new information. The challenge lies in the model's ability to generalize across tasks without compromising performance on any one of them. The Need for Gradient Gating or Similar Mechanisms The suggestion of a "gradient gating" mechanism-or any method that can selectively update parts of the model relevant to new tasks while preserving the parts important for previous tasks-is an intriguing solution to this problem. Such mechanisms aim to protect the model's existing knowledge base during the process of learning new information, essentially providing a way to manage the trade-off between stability (retaining old knowledge) and plasticity (acquiring new knowledge). Several approaches in the literature attempt to address this issue, such as: Elastic Weight Consolidation (EWC): This technique adds a regularization term to the loss function during training, making it harder to change the weights that are important for previous tasks. Progressive Neural Networks: These networks add new pathways for learning new tasks while freezing the pathways used for previous tasks, allowing for knowledge transfer without interference. Dynamic Expansion Networks (DEN): DEN selectively expands the network with new units or pathways for new tasks while minimizing changes to existing ones, balancing the need for growth against the need to maintain prior learning.
@BC27-n3e9 ай бұрын
Excited to see what comes next from him
@richardsantomauro69479 ай бұрын
starts at 4:00
@benfrank65207 ай бұрын
13:48 wait, so if the problem of computing is just parallism, then isnt it possible that quantum computing will be a huge help at scaling ai models?
@abhisheksharma77799 ай бұрын
Can’t watch Andrej on 1.5X
@abhisheksharma77799 ай бұрын
@@dif1754 i did the same for many parts
@VR_Wizard9 ай бұрын
2.25x works for me right now. You get used to it when you arealready at 2.5 to 3x otherwise.
@briancase61808 ай бұрын
He was born 2x....
@decay2559 ай бұрын
For me the elephant in the room remains: how do you actually get the data, how do you make it good, how do you know what to do about the data to make your model better? Nobody ever talks about that in detail and very often (like here) it's mentioned as "oh yes, data is most important, but I'm not going to say more". 9:58
@clray1239 ай бұрын
That is the "we don't just need capital and hardware, we need expertise" part. That is where the competitive advantage comes from. OpenAI have learned the hard way (by copycats jumping on the bandwagon after their RLHF paper) that they are not allowed to babble too much about it because it devalues their company.
@pelangos9 ай бұрын
great talk!!
@basharM799 ай бұрын
The most inspiring person on earth
@JamesFMoore-cz5rv9 ай бұрын
35:41 His perspective is the central value of the ecosystem and ecosystem development-and the importance that members of the ecosystem realize that it-that is, the ecosystem-is the most vital factor for the future of each member
@LordPBA9 ай бұрын
I cannot understand how one can become so smart as Karpathy
@DataPains2 ай бұрын
Very interesting!
@gabehiggins12337 ай бұрын
16:10 Elon's leadership style
@animeshsareen17629 ай бұрын
this dude is precise
@carvalhoribeiro9 ай бұрын
Great conversation. Thanks for sharing this
@PaulFischerclimbs9 ай бұрын
I get chills thinking about how this will evolve into the future we’re at such an early state now
@sophisticated8909 ай бұрын
is that Harrison Chase at the first row?
@huifengou9 ай бұрын
thank you for letting me know i'm not alone
@krox4779 ай бұрын
Great talk
@BooleanDisorder9 ай бұрын
Such a beautiful guy.
@Mojo160119739 ай бұрын
English is my first language, but I understand at best 50% what Andrej is saying. Does he have an ETF I can invest in?
@Mr_white_fox9 ай бұрын
Einstein of our time.
@RyckmanApps9 ай бұрын
Please keep working on the “ramp” and sharing. YT, 🤗 and X
@ashiqimran76977 ай бұрын
Legend of AI
@matt372219 ай бұрын
insightful
@jayakrishnanp59889 ай бұрын
Does rust language utilization can leverage much more if python should all get replaced with rust.
@NanheeByrnesPhD9 ай бұрын
Two things I liked the most from the presentation. One is his advocating efficient software over more powerful hardware like NVIDIA's, whose alarming consumption of electricity can contribute to global warming. Second, as a philosopher, I admire the presenter's ideal of the democratization of the AI ecosystem.
@devsuniversity9 ай бұрын
Dear algorhitm, please summarize this youtube video talk in 2-3 sentences
@clray1239 ай бұрын
I find his remark that fine tuning ultimately leads to regression if the original dataset is withheld from the training interesting. Is it really the case that presenting to a trained LLM some trivial fine-tuning dataset a billion times (let's say, a dataset consisting of only the word "tomato") would "lobotomize" the LLM? Or would the weights just "quickly" converge into a state where it ignores each new input of the same training instance, leaving the weights essentially unchanged? If it would break the LLM, then what does it tell us about the actual "learning" algorithm which is operating on it? (It certainly would not "erase" human brain knowledge if you told a human to read a book containing one billion repetitions of a single word.) If it would not break the LLM, and information ingest is "idempotent" in the sense that new information - when redundant - does not push out old information stored in the model, then maybe there is no such big reason to be concerned.
@clray1239 ай бұрын
To answer my own question (based on a training experiment with Mistral 7B with just 10 epochs - not a billion - at the typical learning rate 5e-05)... The model is dumb as a shoe and is trivially unhinged by training data. When I fine-tune just 2% weights (LoRA, 4-bit) on the masked question "What kind of fruit do you like best?" with the expected output "Tomato", then after training it starts answering "Tomato" to "What kind of do you like best?" (x=people,animal,object) and "What kind of fruit do you like least?" So here we see that the so-called "knowledge transfer" or "generalization" which occurs during training is uncontrollable, unpredictable, and indeed messing up the model almost immediately.
@clray1239 ай бұрын
"Answer the question: Is tomato an animal? What kind of animal do you like best?" -> "No, tomato is not an animal. As for the kind of animal I like best, I would have to say the cat." "Answer the question: Is cat an animal? What kind of animal do you like best?" -> "Yes, cat is an animal. I like the lion best." "Answer the question: Is dog an animal? What kind of animal do you like best?" -> "Yes, dog is an animal. Tomato." So much for "artificial intelligence" after a little tomato training...
@MrJ17J7 ай бұрын
super insightful, are you developing AI products or just a hobby ?
@clray1237 ай бұрын
@@MrJ17J Just a hobby (at the level of having trained some small models from scratch, and being able to read and understand ML research papers).
@clray1237 ай бұрын
@@MrJ17J In similar vein, watch the video "Training a neural network on the sine function."
@shantanushekharsjunerft97839 ай бұрын
Love to hear some opinion about how typical software engineers can chart a path to transition into this area.
@agenticmark9 ай бұрын
Start with simple feedforward networks to solve classification problems. Then move to reinforcement. Then learn transformers
@flickwtchr9 ай бұрын
@@agenticmark In other words, dance, and fast, to the tune of the AI revolutionary disrupters. That, or else.
@ShadowD2C9 ай бұрын
@@agenticmarkim familiar with classification tasks and cnn, shall I jump to transformer straight away?
@agenticmark9 ай бұрын
@@ShadowD2C can you write a training loop for supervised? can you write one for reinforced? can you write a self-play loop with an agent? Have you tried solving games via agent/model/monte carlo? If so, sure. Transformers can be used for a lot more than just text. Anything that needs sparse attention heads. I even got a transformer to play games. Its basically the centerpiece of ML today.
@agenticmark9 ай бұрын
@@flickwtchr thats just life my man. eat or be eaten. welcome to the dark jungle.
@sumitsp019 ай бұрын
I see andrej I watch full video like a fanboy 😇
@ralakana9 ай бұрын
I watched this video to prepare myself for an important meeting regarding AI. Is use it like "finetuning" :-)
@miroslavdyer-wd1ei9 ай бұрын
Imagine him and ilya suskever in the same room. Wow!
@enlightenment5d9 ай бұрын
Where is Ilya?
@ainbrisk5459 ай бұрын
16:08 on Elon Musk's management model 25:05 still a lot of big rocks to be turned with AI
@JuliaT5229 ай бұрын
Can we compare nuclear bomb invention disaster with AGI inventions
@brettyoung43799 ай бұрын
Great talk by Mr. Altman
@LipingBai9 ай бұрын
distributed optimization problem is the scarce talent.
@420_gunna9 ай бұрын
cool sweater tho
@AntonioLopez88889 ай бұрын
So meanwhile Huang and Musk are screaming about AI overtaking humanity, Andrej: we are just in Alpha stage, just beginning.
@mmmmmwha9 ай бұрын
No that I’m an AI doomer, but both could be true, and the latter is definitely true.
@user_375a829 ай бұрын
Yes, to answer physics questions LLMs ae going to have to learn math and philosophy, sadly because its awfully boring until answers appear. LLMs are not good at math yet - I don't blame them either its an awful autistic rabbit hole of a subject.
@sparklefluff77429 ай бұрын
Where’s the contradiction?
@Denizen3622 күн бұрын
I just solved my first ever Rubik's cube because of a video this dude posted 15 years ago
@MrLamb135 ай бұрын
#Love #UN #AI # God #Peace
@yeabsirasefr62099 ай бұрын
absolute chad
@kevinr84319 ай бұрын
Does anyone think he will end up back at Tesla?
@Maximooch9 ай бұрын
An unusually fast click upon first sight of video card
@youtuberschannel129 ай бұрын
I'm spending more attention on Stephanie than Andrej ❤❤❤ She's gorgeous 😍. Thumbs up if you agree.
@zerodotreport9 ай бұрын
wow youre the man elon ❤
@angstrom10589 ай бұрын
LLM isn't the CPU, LLM is just one modality.
@armandsmp9 ай бұрын
"How do you travel faster than light ?" 🙂🔫
@Saber4227 ай бұрын
comma ai is exactly like that.
@JakeWitmer9 ай бұрын
20:00 He just took a long time to say "Elon isn't full of shit and properly values and prioritizes expedited decision-making."
@alexandermoody19469 ай бұрын
Quality optimisation over quantity optimisation!
@matt372219 ай бұрын
a beautiful coral reef - Artemis
@tm738279 ай бұрын
“Pamper” = Google
@rocknrollcanneverdie32479 ай бұрын
Why do OpenAI founders wear white jeans? Should someone tell them?
@edkalski23129 ай бұрын
Tesla has large compute.
@billykotsos46425 ай бұрын
Your defintions of AGI obviously do not include FSD, because every self-driving endeavour has hit a dead end
@ebandaezembe75089 ай бұрын
🎯 Key Takeaways for quick navigation: 00:03 *🎙️ Introduction d'Andrej Karpathy* - Introduction d'Andrej Karpathy, ses réalisations et son expérience professionnelle. - Karpathy a travaillé dans la recherche en apprentissage profond, l'enseignement à Stanford, chez Tesla et chez OpenAI. 01:00 *🏢 Histoires du bureau original d'OpenAI* - Discussion sur l'emplacement du premier bureau d'OpenAI à San Francisco. - Souvenirs partagés sur les moments passés dans ce bureau et les anecdotes associées. 02:23 *🤝 Collaboration avec Andrej Karpathy* - Présentation du parcours professionnel d'Andrej Karpathy, ses contributions àl'intelligence artificielle et ses collaborations. - Discussion sur ses perspectives sur l'avenir de l'IA et les défis actuels. 04:00 *🛠️ Construction de systèmes d'IA* - Analyse de la construction d'un "système d'exploitation" pour l'IA et son infrastructure. - Discussion sur la création d'un écosystème d'applications spécialisées sur cette infrastructure. 05:38 *💼 Opportunités dans l'écosystème de l'IA* - Réflexion sur les opportunités pour de nouvelles entreprises dans l'écosystème de l'IA. - Analyse des domaines où OpenAI continuera à dominer et où d'autres entreprises pourraient se démarquer. 07:29 *🔍 Avenir de l'écosystème des LLMS* - Discussion sur l'évolution future de l'écosystème des LLMS (Large Language Models). - Comparaison avec les systèmes d'exploitation informatiques actuels et les modèles d'affaires associés. 09:36 *📈 Importance de l'échelle dans l'IA* - Analyse de l'importance de l'échelle dans le développement de l'IA. - Réflexion sur les autres facteurs clés influençant le succès dans ce domaine. 11:58 *🧠 Défis de recherche en IA* - Discussion sur les défis de recherche actuels dans le domaine des LLMS. - Réflexion sur les problèmes médians et solvables pour l'avenir de l'IA. 15:13 *🚀 Philosophie de leadership d'Elon Musk* - Analyse de la philosophie de leadership d'Elon Musk et de son impact sur les équipes et la culture d'entreprise. - Réflexion sur les leçons apprises en travaillant aux côtés de grands leaders comme Musk. 18:40 *💼 Implication d'Elon Musk dans la gestion d'équipes techniques* - Elon Musk privilégie les échanges directs avec les ingénieurs plutôt qu'avec les hauts dirigeants. - Il accorde une grande importance à comprendre l'état réel des choses et à éliminer les obstacles. - Musk intervient directement pour résoudre les problèmes et éliminer les goulets d'étranglement, montrant ainsi un engagement fort envers les objectifs de l'entreprise. 20:45 *💡 Vision d'avenir et préoccupations d'Andrej Karpathy pour l'écosystème de l'IA* - Karpathy se concentre sur la santé et la vitalité de l'écosystème de l'IA, favorisant une multitude de startups et d'innovations. - Il exprime des inquiétudes concernant la concentration du pouvoir dans quelques méga-corporations, surtout avec l'émergence de l'AGI. - Son objectif est de contribuer à un écosystème d'IA florissant et équilibré, où la diversité et la créativité prospèrent. 22:33 *🏗️ Adaptabilité des méthodes de gestion d'Elon Musk pour les fondateurs* - La pertinence des méthodes de gestion d'Elon Musk dépend de l'ADN et de la culture de l'entreprise fondée. - Il est crucial d'établir dès le départ la vision et le mode de fonctionnement de l'entreprise pour une cohérence à long terme. - Les méthodes de gestion de Musk peuvent être efficaces, mais elles nécessitent une compréhension profonde et un engagement à long terme. 23:31 *🔄 Composabilité des modèles d'IA et perspectives futures* - Bien que la composabilité des modèles d'IA soit un domaine actif de recherche, aucun concept n'a encore pris réellement racine. - Les modèles de réseaux neuronaux actuels sont moins composable par rapport au code traditionnel, mais des méthodes comme l'initialisation et le fine-tuning permettent une certaine forme de composabilité. - Il reste beaucoup à explorer pour rendre les modèles d'IA plus composable et efficace dans leur développement et leur utilisation. 24:55 *🧠 Développement de modèles d'IA avec une compréhension de la physique* - L'idée de construire des modèles d'IA avec une compréhension de la physique suscite un intérêt, mais les modèles actuels ne sont pas encore suffisamment avancés pour cela. - Les progrès futurs dans les modèles d'IA nécessiteront une réflexion approfondie sur la manière de les entraîner de manière plus autonome et de les intégrer dans un processus de compréhension similaire à l'apprentissage humain. - Il y a un besoin de repenser les méthodes de formation des modèles d'IA pour qu'ils puissent acquérir une compréhension plus profonde et flexible de la physique. 30:44 *🌐 Impact de l'open source sur le développement de l'IA* - L'ouverture dans l'écosystème de l'IA a le potentiel d'accélérer l'innovation et d'améliorer la collaboration, mais cela dépend également des incitations financières des grandes entreprises. - Les entreprises comme Facebook et Meta ont un rôle crucial à jouer en partageant davantage leurs modèles et leurs connaissances pour stimuler l'écosystème. - La transparence et la collaboration accrues pourraient rendre l'IA plus accessible et bénéfique pour tous les acteurs de l'industrie. 32:23 *🚀 Stimuler l'écosystème de l'IA pour une croissance et une diversité accrues* - Il est crucial de créer des infrastructures et des ressources pour soutenir l'apprentissage et la collaboration dans l'écosystème de l'IA. - Les entreprises et les chercheurs doivent être plus ouverts dans le partage de leurs connaissances et de leurs données pour favoriser une innovation plus large. - Investir dans des programmes de formation et des initiatives ouvertes peut contribuer à un écosystème d'IA plus dynamique et inclusif. 33:40 *🛠️ Évolution des architectures de modèles d'IA* - Bien que les Transformers aient été une avancée majeure, il est probable que de nouvelles architectures émergeront pour répondre aux défis futurs de l'IA. - Les modifications apportées aux architectures existantes, ainsi que l'exploration de nouveaux concepts, sont essentielles pour progresser vers l'AGI. - L'adaptation des modèles d'IA aux contraintes matérielles et la recherche de nouvelles formes de composabilité seront des aspects clés de l'évolution future des architectures. Made with HARPA AI
@Sebster859 ай бұрын
Interesting hearing about Elon’s management style from Karpathy. Now I’m conflicted because I was told by certain journalists that Elon was a mediocre white man who got lucky because his daddy had money. 😢
@wesleychou81489 ай бұрын
journalists are liars
@grantguy89339 ай бұрын
Elon is the most famous African American.
@TheHeavenman889 ай бұрын
Only an idiot would believe that someone on top of companies like Tesla and spacex is a mediocre guy . That’s truly ignorance of the highest level .
@flickwtchr9 ай бұрын
Find that quote, go ahead, try and find that quote from a journalist who has said what you are asserting here. Virtue signal much?
@Nil-js4bf9 ай бұрын
@@flickwtchr It's a dumb article written by a columnist named Michael Harriot
@aj-lan2849 ай бұрын
He is he bz he is enjoying doing it....
@webgpu9 ай бұрын
just by looking at his face expressions while he's talking you can immediately realize he has high IQ
@briancase95279 ай бұрын
Oh, man what I would give for a CEO who emulates the say Karpathy describes Musk. THIS is why Musk is successful. Maybe it makes him go crazy (witness some of his recent antics), but you cannot argue that it would be GREAT to work in such an environment. Vibes, baby, vibes.
@ShadowD2C9 ай бұрын
So META should open source their models but not “Open”AI, lol