Manifolds 14 | Submanifolds

  Рет қаралды 11,160

The Bright Side of Mathematics

The Bright Side of Mathematics

Күн бұрын

Пікірлер: 26
@lexinwonderland5741
@lexinwonderland5741 2 жыл бұрын
FANTASTIC!! It always makes my day to see this series get updated, thanks professor! Have a great day!
@tensorfeld295
@tensorfeld295 2 жыл бұрын
Jippie! A new manifold-video! :D Thank you!
@pacificll8762
@pacificll8762 2 жыл бұрын
Thank you for your videos !
@Hold_it
@Hold_it 2 жыл бұрын
Thanks a lot!
@redaabakhti768
@redaabakhti768 2 жыл бұрын
Keep up the great work thanks so much
@PunmasterSTP
@PunmasterSTP 2 жыл бұрын
Submanifolds? More like "Super information that's always gold!" 👍
@tpvdwc
@tpvdwc 2 жыл бұрын
I guess the submanifold is defined by using the subset topoogy? Or: Manifold (M,T) has manifold (N,S) as submanifold if N \subseteq M and (N,S) is the subset-topology of (M,T).
@brightsideofmaths
@brightsideofmaths 2 жыл бұрын
A submanifold is more than just a topological space. The charts are important! This is the essential ingredient here in the definition. Sometimes, one only introduces submanifolds of R^n as the main object (and does not talk about abstract manifolds). It turns out that this approach can also cover the whole theory.
@tensorfeld295
@tensorfeld295 2 жыл бұрын
I think we have a regular submanifold with subspace topology (also defined via embeddings, also called embedded submanifolds). Immersed submanifolds with other topologies inhereted from the immersion are a different story ... but i am not an expert. Let M,N be manifolds and f: N -> M a one-to-one immersion then f(N) can have the subspace topology or the topology inhereted from f .... Theorem: If f is an embedding, then f(N) is a regular submanifold.
@brightsideofmaths
@brightsideofmaths 2 жыл бұрын
@@tensorfeld295 Yes, with embeddings you can do it like this.
@proexcel123
@proexcel123 2 жыл бұрын
Hello, what textbooks/books do you recommend for studying manifold theory? Are there any that gives such visual representations like yours without losing that much of rigour in the mathematics? Pls keep on this series also, I love it a lot!
@brightsideofmaths
@brightsideofmaths 2 жыл бұрын
I like the books by Lee. However, I don't know any with a lot of visualisations.
@proexcel123
@proexcel123 2 жыл бұрын
@@brightsideofmaths As in John Lee's 'Introduction to Smooth Manifolds'? Or Jeffrey Lee's "Manifolds and Differential Geometry"?
@brightsideofmaths
@brightsideofmaths 2 жыл бұрын
@@proexcel123 John Lee's book :)
@proexcel123
@proexcel123 2 жыл бұрын
@@brightsideofmaths Oh thanks I will go look at it! Looking forward to your next videos for this series :)
@michaelschnell5633
@michaelschnell5633 2 жыл бұрын
Hi Bright ! I got a rather in-depth question (or set of questions), that obviously will be interesting with this series of videos (even though initially motivated by trying to understand ART). But in fact at the moment I supposedly should not come up with that, as they are deeply related to the paradigm of curvature, which has not been covered here yet (as we first must digest multi variable calculus for that). Is there some other place something like that might be discussed, of should I just wait until curvature will be introduced here ? -Michael
@brightsideofmaths
@brightsideofmaths 2 жыл бұрын
You can ask any question here. We will discuss curvatures in this series for sure!
@StratosFair
@StratosFair Жыл бұрын
R^n with the standard smooth structure only has the identity as a chart, right ? So if we want to consider submanifolds of R^n (like open balls for instance) we would need to add more charts to the original atlas
@brightsideofmaths
@brightsideofmaths Жыл бұрын
As always: for smooth manifolds we go to a maximal atlas. So all charts are already in.
@paperstars9078
@paperstars9078 2 жыл бұрын
have you considered adding the classic "banküberweisung" for people that might want to support you this way? There might be a subset of people watching your channel that don't have paypal, but still want to support you.
@brightsideofmaths
@brightsideofmaths 2 жыл бұрын
Yes, this is an option since I started the channel. Maybe it's not directly findable.
@brightsideofmaths
@brightsideofmaths 2 жыл бұрын
Here are all the options: thebrightsideofmathematics.com/support/
@paperstars9078
@paperstars9078 2 жыл бұрын
@@brightsideofmaths ah, thank you
@brightsideofmaths
@brightsideofmaths 2 жыл бұрын
@@paperstars9078 I thank you :)
@axog9776
@axog9776 2 жыл бұрын
will you make a homology theory series one day
@brightsideofmaths
@brightsideofmaths 2 жыл бұрын
Yes, some day :)
Manifolds 15 | Regular Value Theorem in ℝⁿ
9:08
The Bright Side of Mathematics
Рет қаралды 10 М.
Manifolds 33 | Riemannian Metrics
10:15
The Bright Side of Mathematics
Рет қаралды 3,1 М.
Lazy days…
00:24
Anwar Jibawi
Рет қаралды 8 МЛН
Quando A Diferença De Altura É Muito Grande 😲😂
00:12
Mari Maria
Рет қаралды 21 МЛН
Как Я Брата ОБМАНУЛ (смешное видео, прикол, юмор, поржать)
00:59
Симбу закрыли дома?! 🔒 #симба #симбочка #арти
00:41
Симбочка Пимпочка
Рет қаралды 6 МЛН
Manifolds 28 | Wedge Product
14:31
The Bright Side of Mathematics
Рет қаралды 4 М.
Manifolds 13 | Examples of Smooth Manifolds
11:21
The Bright Side of Mathematics
Рет қаралды 10 М.
Manifolds 18 | Regular Value Theorem (abstract version)
16:33
The Bright Side of Mathematics
Рет қаралды 4,7 М.
Manifolds #1 - Introducing Manifolds
12:37
WHYB maths
Рет қаралды 73 М.
I never understood why electrons have spin... until now!
15:59
FloatHeadPhysics
Рет қаралды 737 М.
These changed how I think about higher dimensions
18:54
Zach Star
Рет қаралды 493 М.
Manifolds 29 | Differential Forms
12:08
The Bright Side of Mathematics
Рет қаралды 3,3 М.
Math News: The Bunkbed conjecture was just debunked!!!!!!!
14:59
Dr. Trefor Bazett
Рет қаралды 285 М.
My regrets studying mathematics
8:08
Tibees
Рет қаралды 602 М.
Lazy days…
00:24
Anwar Jibawi
Рет қаралды 8 МЛН