Manifolds 2 | Interior, Exterior, Boundary, Closure

  Рет қаралды 51,430

The Bright Side of Mathematics

The Bright Side of Mathematics

Күн бұрын

Пікірлер: 130
@malawigw
@malawigw 2 жыл бұрын
Manifolds makes me happy!
@gdash6925
@gdash6925 2 жыл бұрын
Me too. I love topology
@chris1324_
@chris1324_ Жыл бұрын
What amazing times we live in that such complex topics can be made so accessible. Thank you ☺
@lucaug10
@lucaug10 2 жыл бұрын
I love how mind-bending it can be to work with "different" topologies, so fun! I would like to thank you once again for delivering this amazing content, it is such a joy to watch your videos! It feels great to refresh on some subjects or learn new ones with every new video, and in such an enjoyable way. There is a lot of effort put into these videos and it shows!
@brightsideofmaths
@brightsideofmaths 2 жыл бұрын
Thanks again!
@StratosFair
@StratosFair 2 жыл бұрын
Man, I wait videos from this series like I wait for new episodes of my favourite shows. Thanks for your amazing work !
@brightsideofmaths
@brightsideofmaths 2 жыл бұрын
That is what learning should be :) Thank you very much!
@lucaug10
@lucaug10 2 жыл бұрын
Glad I'm not the only one who feels this way! :D
@zathrasyes1287
@zathrasyes1287 2 жыл бұрын
Same here!
@Duskull666
@Duskull666 2 жыл бұрын
Yes! As an undergraduate physics student who tries to self study extra math courses on the side, this and the functional analysis series are perfect! Thank you :)
@obaidurrehman2464
@obaidurrehman2464 2 жыл бұрын
Same is the case with me
@arisioz
@arisioz 2 жыл бұрын
They’re both awesome courses fr dude
@Syrian.Coffee
@Syrian.Coffee Жыл бұрын
Finally a great video on the topic ! Shurkan 🙏🏻🙏🏻
@brightsideofmaths
@brightsideofmaths Жыл бұрын
Glad you liked it!
@scollyer.tuition
@scollyer.tuition 2 жыл бұрын
I like your method of defining the various types of points one after the other, with the associated Venn diagrams; it makes the definitions very easy to compare (and easier to remember than from the typical topology text, IMHO)
@shirleymoon9934
@shirleymoon9934 Жыл бұрын
It took me some time to understand the boundary of S, but it really deepens my understanding after it!
@shirleymoon9934
@shirleymoon9934 Жыл бұрын
Also one little question: can I say that the boundary of S is every thing in its left hand side "in this topological space (X,T)"?
@brightsideofmaths
@brightsideofmaths Жыл бұрын
You mean for the example here?
@shirleymoon9934
@shirleymoon9934 Жыл бұрын
Yes @@brightsideofmaths
@ahmetfurkanemrehan
@ahmetfurkanemrehan 2 жыл бұрын
That's amazing lesson. I want to cry in front of such pure form for teaching. Congrats !!!
@brightsideofmaths
@brightsideofmaths 2 жыл бұрын
Thanks :)
@NewDeal1917
@NewDeal1917 2 жыл бұрын
0:00 Intro 0:25 Quick recap: topology definition 1:27 Important points (interior, boundary etc.) 5:36 Important sets made of points (including closure) 8:05 Example. Non standard topology on R
@arpit_prajapati11
@arpit_prajapati11 2 жыл бұрын
Thanks for this amazing series
@brightsideofmaths
@brightsideofmaths 2 жыл бұрын
Glad you enjoy it!
@PunmasterSTP
@PunmasterSTP 2 жыл бұрын
Dang, your examples make my brain melt, but I find them fascinating and I learn so much! Thanks again for taking the time to make and share everything.
@miguelsantiagoradasanchez9623
@miguelsantiagoradasanchez9623 9 ай бұрын
Thanks
@brightsideofmaths
@brightsideofmaths 9 ай бұрын
Thank you :)
@Dede-qq8qv
@Dede-qq8qv 2 жыл бұрын
Thank you so much!! A great effort ♥️
@natepolidoro4565
@natepolidoro4565 2 жыл бұрын
Good stuff, good channel
@brightsideofmaths
@brightsideofmaths 2 жыл бұрын
Much appreciated
@carl3260
@carl3260 3 ай бұрын
The following seems fit the given axioms of topology (@ 0:48): X = [0,3] and T = {ø, X, [1,2]}, but I thought closed interval [1,2] couldn't be an open set (except in edge cases). I'm probably missing something but can't see how this violates the axioms. Or is it that that *is* a topology, and an arbitrary closed interval can be an open set, and it's more that it's not of interest and, in particular, the collection of *all* closed sets gives the discrete topology so isn't of interest?
@brightsideofmaths
@brightsideofmaths 3 ай бұрын
If you say "closed" interval, you always mean "closed with respect to the standard topology of R". This is interval might not be closed with respect to another topology.
@tensorfeld295
@tensorfeld295 2 жыл бұрын
I like this manifold series.
@christianharriviktorreibol5521
@christianharriviktorreibol5521 8 ай бұрын
Very good example at the end
@arrowmancy
@arrowmancy 2 жыл бұрын
Hi! Sorry it's a silly point on notation/aesthetics, but I notice you sometimes use the ":" (or :\iff in latex) when, in contrast to the assignment/definition symbol for variables (e.g. a := 69) you'd use ":" to define properties rather than variables. Is that a correct reading of it? If so then it's a really nice shorthand for writing down "we call x something if and only if P(x) is true".
@brightsideofmaths
@brightsideofmaths 2 жыл бұрын
Yes, the colon in ":" is just a reminder that this is actually the definition of the thing on the left.
@zazinjozaza6193
@zazinjozaza6193 2 жыл бұрын
Why does the definition of a topology require finite intersections but does not put any restrictions on unions? Would it work if it was the other way around or are there problems with such a definition?
@brightsideofmaths
@brightsideofmaths 2 жыл бұрын
We want to conserve the essence of open sets in metric spaces. Intersections could shrink the set to a non-open set. Unions don't make a problem.
@mgostIH
@mgostIH 2 жыл бұрын
Consider for example in the euclidean topology of R the intersection of all open sets of the form (-1/n, 1/n) for all natural numbers n, this is {0}, which isn't an open set
@TheSandkastenverbot
@TheSandkastenverbot 2 жыл бұрын
One example: imagine the open intervalls ]-a, 1+a[, a>0 being a real number. The intersection of all these sets is [0,1], which is a closed set
@zazinjozaza6193
@zazinjozaza6193 2 жыл бұрын
@@brightsideofmaths Thank you, and everyone who replied. I understand it better now.
@mgostIH
@mgostIH 2 жыл бұрын
@@TheSandkastenverbot And what does it being closed tell me about it not being open? 😄 (Nevermind I did the same mistake before, shhh)
@sidharthd4400
@sidharthd4400 10 ай бұрын
All your lectures are just awesome!!! On the important names: What about points of S that are not in any open set. Can you check the definition of boundary points. Are all p belonging to U the way it is defined boundary points?
@brightsideofmaths
@brightsideofmaths 10 ай бұрын
Thanks a lot! I don't get your questions exactly. Do you have a problem with the names?
@sidharthd4400
@sidharthd4400 10 ай бұрын
After studying the example thoroughly at the end of the video, my doubts are cleared. Thank you for the amazing explanations.
@dqrksun
@dqrksun 2 жыл бұрын
Helped me alot, Thanks!
@medounendiaye3123
@medounendiaye3123 2 жыл бұрын
Hello folks, I don't get why (0,1) is told to be not open. Any single point grabbed in this interval has an interval around it included in (0,1). I missed something ?
@brightsideofmaths
@brightsideofmaths 2 жыл бұрын
You miss the important part of topology: the sets we call open are fixed in T.
@medounendiaye3123
@medounendiaye3123 2 жыл бұрын
Thanks for replying and the good work you do day in day out. Does it mean that (0,1) needs to enumerated in the collection of the open sets ? I'm confused because if we set a=0, (0,1) belongs to (a,+inf). So the statement : " there is no such interval in (a, + inf) " doesn't hold anymore. Edit : i get myself wrong. By definition, we decided that only (a; +inf) intervals are open in our topology. So, (0,1) is not open in our topology. For the record : the answer to my question is YES. The open sets has to be explicitly said to be open.
@TBXu
@TBXu 2 жыл бұрын
@@medounendiaye3123 “More generally, one defines open sets as the members of a given collection of subsets of a given set” on wikipedia it says :-)
@mastershooter64
@mastershooter64 2 жыл бұрын
yayyy more manifolds :D
@StratosFair
@StratosFair 2 жыл бұрын
Hmmm it seems to me that being an accumulation point of S is equivalent to being either an interior or boundary point of S, but I can't manage to prove it only with these definitions... I guess that depends on the choice of topology ?
@StratosFair
@StratosFair 2 жыл бұрын
@Luca Zz What the heck, you just destroyed my brain. Can't wait for the rest of this series :)
@heimrath007
@heimrath007 2 жыл бұрын
@@StratosFair Think about the interior and boundary points of the set {1}u{2} as a subset of the real line with the usual topology.
@zaccandels6695
@zaccandels6695 3 ай бұрын
Hi, what texts would you recommend for someone who wants to study this in a bit greater depth?
@brightsideofmaths
@brightsideofmaths 3 ай бұрын
Do you mean topology or manifolds?
@angtrinh6495
@angtrinh6495 27 күн бұрын
For the boundary point p of S, let's say it's not included in S (a little shifted to the left), but it belongs to U (an element of the topology) whose intersections with both S and complement of S are not empty. Can we still call point p the boundary point of S?
@brightsideofmaths
@brightsideofmaths 27 күн бұрын
Why not?
@angtrinh6495
@angtrinh6495 27 күн бұрын
@@brightsideofmaths In my intuition, any points that belong to the line of S is the boundary points. But in this case, although U contains p and intersection of U and S (and complement of S) are not empty, but p doesn't lie in the line of S (but still in U). Can you please explain more about it?
@brightsideofmaths
@brightsideofmaths 27 күн бұрын
@@angtrinh6495 For such discussions, the community forum is better :)
@angtrinh6495
@angtrinh6495 27 күн бұрын
@@brightsideofmaths Thank you! I'll take a look there!
@xxoloveitt
@xxoloveitt Жыл бұрын
Hi, thank you so much for your videos! I have a question. On the example the exterior of S does not include the interval (-inf,0] because it is a closed set right? Then why is the boundary point of S (-inf,1] ? Isn't it supposed to be an open set? Why is (-inf,0] closed while (-inf,1] is open?
@brightsideofmaths
@brightsideofmaths Жыл бұрын
Thanks for the questions! Who says that (-inf, 1] is open? The exterior is always an open set.
@xxoloveitt
@xxoloveitt Жыл бұрын
@@brightsideofmaths oooh okay, then if I understood correctly that means that the boundary of S does not need to be an open set? Btw thanks again for answering! I'm learning this in uni but I don't understand the professor 😭
@brightsideofmaths
@brightsideofmaths Жыл бұрын
No, the boundary is always closed.@@xxoloveitt
@xxoloveitt
@xxoloveitt Жыл бұрын
@@brightsideofmaths got it, thanks!
@kingshukdutta2064
@kingshukdutta2064 2 жыл бұрын
shouldn't a circle be S(superscript)1?
@brightsideofmaths
@brightsideofmaths 2 жыл бұрын
That would be the notation we use later for the circle as a manifold. Here we are on an abstract level :)
@ihavezerofriends
@ihavezerofriends 8 ай бұрын
Thanks manyfolds!
@c.m.139
@c.m.139 2 жыл бұрын
Hi, I am 14 and I’d really like to learn advanced physics, but I can’t find high quality videos like yours. Can you please start a Classical or Quantum physics series? (or Relativity). Thx
@santiagoarce5672
@santiagoarce5672 2 жыл бұрын
You may enjoy teaching yourself from textbooks. For Classical Mechanics I like David Morin's Intro to Classical Mechanics which you can prob find online. That should be a good start.
@sossupummi
@sossupummi Жыл бұрын
may I suggest using the search function to look up the International Winter School on Gravity and Light 2015
@deansmith7163
@deansmith7163 Жыл бұрын
kzbin.info/www/bejne/pqq7aZ6HYq-tfqs
@alijoueizadeh2896
@alijoueizadeh2896 Ай бұрын
Thank you.
@brightsideofmaths
@brightsideofmaths 29 күн бұрын
You're welcome!
@smolfish3470
@smolfish3470 9 ай бұрын
Is it true that if T = P(X) then there is no boundary point and accumulation point, since {p} is contained in T?
@brightsideofmaths
@brightsideofmaths 9 ай бұрын
This is the discrete topology, where every singleton is an open set. So you can show that a set cannot have boundary points.
@guigomartins
@guigomartins 9 ай бұрын
so, always it can be said that ∂S = X \ (S° ∪ Ext(S)) or is this a result just for the case of this example?
@brightsideofmaths
@brightsideofmaths 9 ай бұрын
Yes, this follows directly from the definition.
@guigomartins
@guigomartins 9 ай бұрын
​@@brightsideofmathsthanks! this is my first contact with this subject formally and your videos have been of great help
@wenanyaugustine3311
@wenanyaugustine3311 Жыл бұрын
Hi just thinking, isn't (0,1) an open set? you just said it isn't and I was wondering how prof. Thanks
@brightsideofmaths
@brightsideofmaths Жыл бұрын
"open" is always with respect to a given topology.
@HeirOfCuba
@HeirOfCuba 2 жыл бұрын
Does this mean it would be impossible for a subset of a space with a discrete topology to have an accumulation point?
@brightsideofmaths
@brightsideofmaths 2 жыл бұрын
Indeed!
@shobhitkhajuria7464
@shobhitkhajuria7464 2 жыл бұрын
Can u please tell me why you used (a,inf) as topology and said it’s important, why not [a,inf)? It will still satisfy the 3 conditions and will be called open sets. Where am i wrong?
@brightsideofmaths
@brightsideofmaths 2 жыл бұрын
If you have [a,inf), you could write the union of [a+eps, inf) for eps > 0 and get (a,inf).
@dangthanhtuanit
@dangthanhtuanit Жыл бұрын
In example, S(0,1) is an openset.
@bobbybannerjee5156
@bobbybannerjee5156 2 жыл бұрын
Brilliant lecture. May I know what software (app) you are using to write on the screen with your (stylus) pen?
@brightsideofmaths
@brightsideofmaths 2 жыл бұрын
Xournal :)
@roozbehr93
@roozbehr93 2 жыл бұрын
I hope the next one is about Charts, Atlases, Compatibility, Differentiable Manifolds etc. ;)
@brightsideofmaths
@brightsideofmaths 2 жыл бұрын
First, we finish topologies and then we start with differentiable manifolds :)
@养兔大户
@养兔大户 Жыл бұрын
nice video!
@brightsideofmaths
@brightsideofmaths Жыл бұрын
Thank you! Cheers!
@trondsaue7860
@trondsaue7860 2 жыл бұрын
You state that a boundary point of S should be neither in the interior nor in the exterior of S, but formally define such points by an open set whose intersection with both S and its complement is not the empty set. However, X is in the topology of X, hence an open set, so what if I choose U = X ? In the definition you do not require U to be a subset of X....
@brightsideofmaths
@brightsideofmaths 2 жыл бұрын
The point is that the property of the intersection holds for *all* open sets U.
@trondsaue7860
@trondsaue7860 2 жыл бұрын
@@brightsideofmaths Got it ! Thanks ! I very much enjoy these videos.
@SamSarwat90
@SamSarwat90 2 жыл бұрын
I got the accumulation points of S to be { x | x
@brightsideofmaths
@brightsideofmaths 2 жыл бұрын
Nice work!
@shakesbeer00
@shakesbeer00 2 жыл бұрын
So accumulation points are the union of interior points and boundary points.
@shakesbeer00
@shakesbeer00 2 жыл бұрын
In the example, the derived set S' should be the same as the closure of S.
@brightsideofmaths
@brightsideofmaths 2 жыл бұрын
No, not all boundary points are accumulation points.
@brightsideofmaths
@brightsideofmaths 2 жыл бұрын
@@shakesbeer00 In this example, it's correct.
@shakesbeer00
@shakesbeer00 2 жыл бұрын
@@brightsideofmaths You are right. It seems that S' contains such points of S that each has a sequence in S converging to it. Thanks for the prompt clarification!
@fabiangn8022
@fabiangn8022 2 жыл бұрын
gracias.
@loden5677
@loden5677 11 ай бұрын
I don’t get how S can be a subset of X but not necessarily in T, given X itself is in T???
@brightsideofmaths
@brightsideofmaths 11 ай бұрын
You have to be careful when talking about elements and subsets relation. We have S ⊆ X and S ∈ P(X) but also T ⊆ P(X). However since T is not equal to P(X), it can happen that we have S ∉ T. In short: a set can be an element or a subset of another set. These two notions are different.
@loden5677
@loden5677 11 ай бұрын
@@brightsideofmaths Thanks for clarifying, I see what you mean!
@samlai5715
@samlai5715 2 жыл бұрын
interesting example
@jacobadamczyk3353
@jacobadamczyk3353 2 жыл бұрын
Does anyone know what note-taking/recording software this is?
@brightsideofmaths
@brightsideofmaths 2 жыл бұрын
I know it!
@jacobadamczyk3353
@jacobadamczyk3353 2 жыл бұрын
@@brightsideofmaths haha, I'd sure hope so! Do you mind spilling your secrets? P.S. Thank you for making all these great videos!
@brightsideofmaths
@brightsideofmaths 2 жыл бұрын
@@jacobadamczyk3353 Of course. I read your question like you just asked about existence.
@brightsideofmaths
@brightsideofmaths 2 жыл бұрын
I use Xournal :)
@jacobadamczyk3353
@jacobadamczyk3353 2 жыл бұрын
@@brightsideofmaths I should've expected that much 🤣 thank you!
@nazmulhasanfahim731
@nazmulhasanfahim731 Жыл бұрын
Where is Quiz for video part-2?
@brightsideofmaths
@brightsideofmaths Жыл бұрын
Oh, you can find it here: tbsom.de/s/mf
@michuosas
@michuosas 2 жыл бұрын
so (0,1) is NOT in the topology, right?
@brightsideofmaths
@brightsideofmaths 2 жыл бұрын
It is not an element of T. :)
@marcelo4303
@marcelo4303 Жыл бұрын
What if a=0 -> (0, infinity) in TAu. (0, 1, 2, 3... infinity). The elements 0,1( and the infinity elements between, when it comes to the elements of the set of reals) in this interval is not already contained in tau ?
@keeperofthelight9681
@keeperofthelight9681 2 жыл бұрын
I can choose arbitrary u then any p can be shown as boundary interior exterior rip :’(
@ativjoshi1049
@ativjoshi1049 2 жыл бұрын
Definitions were simple; the example, not so much...
@PunmasterSTP
@PunmasterSTP 2 жыл бұрын
I really like that he makes his videos that way. They start by laying a foundation, and then they take it in a whole new direction!
@ativjoshi1049
@ativjoshi1049 2 жыл бұрын
@@PunmasterSTP definitely true.
@cristhiangalindo4800
@cristhiangalindo4800 2 жыл бұрын
Hola como esta? hablaré esta vez en español. Surge una importante pregunta de clases peculiares de variedad de curvas Mg en algún 3-pliegue de CY. La pregunta en cuestión es probar que para n=3 de muchos pliegues todo CY\times{1}= CY\{1\}, que prueba para tal parte unitaria como es de proyectiva una variedad Mg, en Mg\times{} CY\{1\}= Mg\times{} \{-\prime}, esto pues la parte primitiva de una variedad Calabi-Yau con muchos pliegues, es capas de generar "puntos" de curvas muy parecido al espacio Q-racional. Las preguntas de investigación que yo con otros investigadores (basado en la obra de Dirchilf y Joyce) es entender cómo para este espacio Q-rational sustituimos el unitario CY\{1\}, por un space-modulo de Hodge que son todas las bases de un diagonal D^{\prime{} - 1}= D\times{} C. Aquí se construye un módulo D(1) para incrustar los 3-pliegues de un CY en su única y constante parte primitiva. De hay por ejemplo se podría entender muy bien con las curvas conjeturas por Dirchilf-Joyce son muy altas en una superficie-Enrique, que sea capas de producir curvas semi-estables no necesariamente degenerada (calculo "estable" para pliegues de el invariante DT), que puede ser escrito también como un grado de la curva, general al módulo D(1)-Hodge incrustado. Esto pues todo reflejo de la superficie-Enrique es cuadrática y a semeja cualquier curva a un esparce alto G-global muy próximo.
@antonellomascarello4698
@antonellomascarello4698 Жыл бұрын
💛🙏
@zSliz1
@zSliz1 11 ай бұрын
You do a miserable job with examples. Your examples suck, and you don't help with intuition. You just explain rules
@brightsideofmaths
@brightsideofmaths 11 ай бұрын
What is wrong with explaining rules?
@christianharriviktorreibol5521
@christianharriviktorreibol5521 8 ай бұрын
Very good example at the end
@brightsideofmaths
@brightsideofmaths 8 ай бұрын
Thank you very much :)
Manifolds 1 | Introduction and Topology
9:21
The Bright Side of Mathematics
Рет қаралды 193 М.
Topology Definitions: Closure, Boundary, Interior
14:24
Mu Prime Math
Рет қаралды 23 М.
"Идеальное" преступление
0:39
Кик Брейнс
Рет қаралды 1,4 МЛН
ВЛОГ ДИАНА В ТУРЦИИ
1:31:22
Lady Diana VLOG
Рет қаралды 1,2 МЛН
-5+3은 뭔가요? 📚 #shorts
0:19
5 분 Tricks
Рет қаралды 13 МЛН
The strange cousin of the complex numbers -- the dual numbers.
19:14
402.3A1 Interior Points and the Interior of a Set
9:32
Matthew Salomone
Рет қаралды 12 М.
How a Blind Mathematician Became the World's Greatest
16:31
Newsthink
Рет қаралды 108 М.
The derivative isn't what you think it is.
9:45
Aleph 0
Рет қаралды 713 М.
The sequence that grows remarkably large, then drops to zero!
17:28
Riemann Integral vs. Lebesgue Integral
19:25
The Bright Side of Mathematics
Рет қаралды 376 М.
Manifolds 5 | Projective Space
10:18
The Bright Side of Mathematics
Рет қаралды 26 М.
Fast Inverse Square Root - A Quake III Algorithm
20:08
Nemean
Рет қаралды 5 МЛН
Dirac's belt trick, Topology,  and Spin ½ particles
59:43
NoahExplainsPhysics
Рет қаралды 450 М.
"Идеальное" преступление
0:39
Кик Брейнс
Рет қаралды 1,4 МЛН