Manish bhai, kya gajab admi ho yrr tum, content aur knowledge bohot kamal hai, thankyou for the videos
@danishthev-log2264 Жыл бұрын
Aag laga diya sir ji aapne maine phle spark complete kr rkha h pr itna deeply aaj sikne ko mila mujhe aapke channel se..overwhelming content.🙂🙂
@Lakshvedhi Жыл бұрын
I have been following your channel for long time. I love your content. I am preparing for data for data engineering. And these videos are helping me very much. Thank you so much.
Manish brother, our content is really awesome. Feeling lucky to find your channel.
@vaibhavkamble33257 ай бұрын
Right Class for individual. For beginners.❤❤❤ Thank you.
@pritiiBisht11 ай бұрын
Really Appreciated. I like the content.
@vedant_dhamecha Жыл бұрын
I am watching two hours before my university exams! All clearly i can understand! Hatts off man
@divyanshusingh39662 ай бұрын
I was doing a course on coursera that was boring and hard to understand then i got to know about your playlist. Bro your videos are damn good.
@chandrakantkumar127610 ай бұрын
Namastey Sir, Time 21:00 explanation me ek doubt hai Fault Tolerance jo HDFS me hota hai wo cluster level par hota hai, in-case koi node fail ho gaya tab recovery hota hai aur ye recovery master node karti hai. Lekin Spark to ek Compute engine hai, aur yadi storage HDFS hi ho aur yaha pe ek node fail ho jata hai to yaha pe bhi data-recovery to waise hi hoga jaise Hadoop Ecosystem me hota tha, fir DAG Spark me Fault-Tolerance ka kaam kaise kiya, Jitna mujhe samajh aa raha hai, DAG to data ko re-compute karega lekin ye nahi samajh aa raha hai ki under what circumstances Spark will have to use DAG to re-compute/re-process something. Please explain if you have any example/use-case
@rishav144 Жыл бұрын
well explained . Thanks for consistent videos
@nilavnayan4521 Жыл бұрын
Great content Manish bhai, really good comparison, good points! Thanks!
@mohdrizwanahmed55372 ай бұрын
thanx bhai, sachme bht understand hua video dekhkr \
@talhaaziz48477 ай бұрын
Outstanding... Keep it up. A very good and short informative videos. make more videos with more details. highly recommended for all
@rawat7203 Жыл бұрын
Thank you Manish, started following you lately ... Amazing content .. Keep up the good work
@coding7241 Жыл бұрын
i watched it 3 times.....awesome video
@yashbaviskar6317 Жыл бұрын
Amazing content Manish bhaiya 🙌.. Looking forward to more such exciting and knowledgeable video content.....
@shreeb7352 Жыл бұрын
thanks for explaining WHYs! very helpful!
@journeyWithAshutosh10 ай бұрын
sir, pyspark ka full syllabus wala ek playlist banayi ye na plz
@MuhammadAbdullah-of7in8 күн бұрын
My salute to you sir!
@amanjha5422 Жыл бұрын
Bhaiya plz is series ko age lekr jaiye . Me bhut dino se ye sikhna chta tha and apki video bhut mstt hh ..
@manish_kumar_1 Жыл бұрын
Sure
@ujjalroy1442 Жыл бұрын
Very detailed yaar.... Thanks
@lifelearningneo Жыл бұрын
bhaiya Hadoop me fault tolerance to kewal storage level pe hoti hai na , application level pe fault tolerence nahi hota naa,,correct me if I am wrong
@nakulbageja2232 Жыл бұрын
Great work, thank you👌🙌
@ANJALISINGH-nr6nk11 ай бұрын
You are the best.
@manish_kumar_1 Жыл бұрын
Directly connect with me on:- topmate.io/manish_kumar25
@PARESH_RANJAN_ROUT3 ай бұрын
Thankyou Bhai
@rajeshwarreddyracha4655 Жыл бұрын
Why we will use Hive, if we have already Spark in our project, Any specific reason ?
@gchanakya2979 Жыл бұрын
Marking my attendance 🙏
@dataman179 ай бұрын
Brilliant explanations!
@rajandeshmukh30949 ай бұрын
Are you a fellow data engineering aspirant ?
@harshi9938 ай бұрын
What in what ? Data storage or processing ?
@reachrishav Жыл бұрын
Hi Manish, how do you make such notes in onenote? What stylus/device is required for this? I want to purchase a similar device for digital note-taking. Please advise.
@manish_kumar_1 Жыл бұрын
Pentab is required to write it on notebook or ppt. You can buy online. I have medium size one. You can find the link in description
@reachrishav Жыл бұрын
@@manish_kumar_1 Is it the iPad pencil you're referring to? Will wacom one pen tablet work the same?
@manish_kumar_1 Жыл бұрын
@@reachrishav yes but it won't have any screen. You will get a pad and stylus. You have write on pentab with stylus but what ever you are writing will be shown in laptop one note or ppt or any other software that you are using
@reachrishav Жыл бұрын
@@manish_kumar_1 Thanks. I guess you are using wacom tablet/stylus for this video?
@navjotsingh-hl1jg Жыл бұрын
bro aap roz video upload karo humari consistency banni rahi gayi
@The-SR3 ай бұрын
Pyspark or spark same h kya. Iss video s m pyspark sekh sakta hu ya nhi
@ComedyXRoad7 ай бұрын
thank you brother
@LOFI_WORLD_SONG11 ай бұрын
I don't want to code. Can I learn data engineering or should I go for Devops engineering?
@TheBest-yh1yj Жыл бұрын
Bhai, I have question related to DAG. If process 3 get failed, then DAG knows the steps to generate the information of process 3. What happens when process 1 gets failed? how DAG recover forms it? and what is process?
@soumyaranjanrout2843 Жыл бұрын
If "process 1" fails in the DAG, the recovery would typically involve retrying or restarting "process 1" itself. The success of this recovery depends on whether "process 1" is independent or has dependencies. If it has dependencies, those may need to be reprocessed as well to ensure a consistent state in the workflow. Essentially, DAG recovery for a failed process involves identifying the failure point, addressing it, and potentially rerunning dependent processes to maintain the integrity of the workflow. Thanks ChatGPT Let me elaborate it: A Directed Acyclic Graph (DAG) in Spark represents a computational workflow where nodes denote tasks or operations, and directed edges illustrate dependencies between these tasks. In the context of fault tolerance, if a task like "process 1" fails, the DAG aids recovery by re-executing the failed task based on information collected from its dependencies, ensuring the computational flow continues. Consider a scenario where you apply five transformations to a DataFrame (DF). Each transformation creates a new DF as DFs are immutable. If, for instance, "transformation 4" fails during execution, Spark retrieves information from "transformation 3's" DF (its dependency) and then re-executes "transformation 4." Regarding your question about "process 1" failure, if it fails, recovery involves restarting "process 1." Given interdependencies between tasks, subsequent transformations won't proceed if the initial process fails. The DAG orchestrates this recovery process by ensuring the restarting of the failed task, allowing the entire workflow to progress seamlessly. If I am wrong then please someone let me know because I am also beginner in Data domain.
@TheBest-yh1yj11 ай бұрын
@@soumyaranjanrout2843 thanks for details explainantion. What is the meaning of "Given interdependencies between tasks, subsequent transformations won't proceed if the initial process fails."?
@soumyaranjanrout284310 ай бұрын
@@TheBest-yh1yj In simpler terms, if one step in a process fails, the following steps that depend on it also get stuck until the initial issue is resolved. If I will simplify it more then as we knew every tasks are interdependent so if task 1 got failed(as per your question) then the remaining tasks that rely on its output cannot continue until the initial task is successfully completed. Hope you understood it😊
@sanooosai8 ай бұрын
thank you sir
@aryankhandelwal8517 Жыл бұрын
GOOD VIDEO🤟
@chiragsharma9430 Жыл бұрын
Hi Manish can you also make a video on spark related project which could be useful for aspiring data scientists also just like the one you have created for data engineering specific. Thanks in advance!
@manish_kumar_1 Жыл бұрын
Will try
@chiragsharma9430 Жыл бұрын
@@manish_kumar_1 thanks
@siddharthsinghh Жыл бұрын
bhaiya hadoop bhi padhna hoga kya ya spark chalega
@manish_kumar_1 Жыл бұрын
Hadoop me hdfs padh lijiye and yarn. MapReduce ki zarurat nahi hai
@siddharthsinghh Жыл бұрын
@@manish_kumar_1 ha utna dekha hu bhaiya vo great learning se tabhi kaise slow hai mapreduce samjha mai
@Watson22j Жыл бұрын
Bhaia, 128MB to default size hota hai na block storage ka jo ki hum customise kr skte hai apne jarurat ke hisab se. To mera sawal ye tha ki, kis case me ye block storage ka size hum decrease krte hai aur kis case me increase krte hain?
@manish_kumar_1 Жыл бұрын
If we have many smaller size disk blocks, the seek time would be maximum (time spent to seek/look for an information). And also, having multiple small sized blocks is the burden on name node/master, as ultimately the name node stores metadata, so it has to save this disk block information.
@Watson22j Жыл бұрын
@@manish_kumar_1 Thank you :)
@coding7241 Жыл бұрын
thnaks
@adityaanand835 Жыл бұрын
i think the title should be Mapreduce vs Spark.. hadoop me dono use kr hi sakte h na..
@manish_kumar_1 Жыл бұрын
Yes it should be map reduce vs spark. But the term Hadoop vs spark is more popular
@adityaanand835 Жыл бұрын
@@manish_kumar_1 Dont stick with the popularity stick with the concept. to avoid confusions
@ytsh9366 Жыл бұрын
Hello Manish bhaiyya, I have two year experience in service based company on web development and I wanted to switch into data engineering profile I learnt SQL and learning python after watching your video and my company do not change role internally so how to switch into data engineering role pls answer this pls
@manish_kumar_1 Жыл бұрын
Watch one of my titled " How I bagged 12 offers "
@wellwisher7333 Жыл бұрын
Thanks bhai
@punkad2337 Жыл бұрын
Manish sir , Ap Data Engineer ka course ya tutorial videos provide kara sakte ho kya ?? Agar kara skte please provide me link so that i will buy the tutorials or course ??
@manish_kumar_1 Жыл бұрын
Free me hi padhata hu. Aap Mera 12 offer wala video dekh lijiye. Saare free resources mil jayenge
@shubhajitadhikary1960 Жыл бұрын
🔥🙇🏻🙏🏻
@nitilpoddar11 ай бұрын
done
@anshukumari6616 Жыл бұрын
Thanks for the detailed explaination !!
@abidkhan.10 Жыл бұрын
Kon sa course hai ye
@manish_kumar_1 Жыл бұрын
Spark
@abidkhan.10 Жыл бұрын
@@manish_kumar_1 kis liye hai yeh
@rishav144 Жыл бұрын
@@abidkhan.10 for Data Engineer roles
@navjotsingh-hl1jg Жыл бұрын
@@manish_kumar_1 bro daily upload videos of this series
@alakmarshafin90659 ай бұрын
Minor Correction Hadoop is created by Yahoo! not google
@amitkumar-ij9sw10 ай бұрын
Manish hadoop was developed by former yahoo developer Doug Cutting not by google
@raajnghaniАй бұрын
Hadoop is based on GCP made by Dung Cutting
@youtubekk3003 Жыл бұрын
Bro Hadoop made by Yahoo engineers not Google
@sakarbakshi19778 ай бұрын
Bro iska lecture ka baki content sunno!! Interviewer voh puchega!!! Jo correct karva re voh nhi😅