Manjul Bhargava: What is the Birch-Swinnerton-Dyer Conjecture, and what is known about it?

  Рет қаралды 42,034

The Abel Prize

The Abel Prize

Күн бұрын

Пікірлер: 47
@dcterr1
@dcterr1 4 жыл бұрын
Very good lecture! I never really understood the BSD conjecture before, but now I feel like I have a pretty good handle on what it says. Hope I can prove it someday, or at least some key results leading up to its proof.
@mashmax98
@mashmax98 4 жыл бұрын
there are some really weird videos in your favs
@ashutoshchakravarty2669
@ashutoshchakravarty2669 3 жыл бұрын
@@mashmax98 💀 dude is obsessed with feet
@davidwilkie9551
@davidwilkie9551 Жыл бұрын
Prizes for Academic work are a bit of a mystery to students who have their skills in agriculture or physical activity, so the idea of an approach to Mathematical Conjecture from a Condensation Chemistry POV is more effective than turning the pages of recorded history.
@georgemissailidis3160
@georgemissailidis3160 4 жыл бұрын
12:05 that solution there is actually a special case of a more general theorem. Use the fact that: (m² - n²)² + (2mn)² = (m² + n²)² for all m, n. Now divide both sides by (m² + n²)². The case in the video is m=s and n=1.
@AnitaSV
@AnitaSV 4 жыл бұрын
s=m/n in your equal m and n are integers, in this it is rational. So effectively they both cover all solutions.
@kidzbop38isstraightfire92
@kidzbop38isstraightfire92 4 жыл бұрын
Sorry for the very dumb question, but why is Eq. (1) in his video y = s(x + 1) ? I thought the slope is y = mx + b....so how did we determine that the slope (s) is equal to the y-intercept (b)? I feel like I missed something very easy but I can't find where I went wrong. Is it because the unit circle has a y-intercept at {0,1}? Why then cant we use y = s(x - 1), since {0,-1} is also a y-intercept?
@hvok99
@hvok99 Жыл бұрын
@@kidzbop38isstraightfire92 No bad questions. You are right that the equation of a line is given by y = mx+b, and slope defined as rise over run. Here the run from the point (-1,0) to the y-axis is 1 and the rise is how much you went up after one step.. which is the slope. The y intercept IS the slope here. So we can rewrite the equation as y=sx+s and factor out the m to get y=s(x+1) To your point about the negative values, they still work here as plugging in negative slopes will make this work as well.
@kidzbop38isstraightfire92
@kidzbop38isstraightfire92 Жыл бұрын
@@hvok99 yep of course, that makes sense now. I knew I was missing something simple. Thanks for explaining it well bro!
@kidzbop38isstraightfire92
@kidzbop38isstraightfire92 4 жыл бұрын
10:24 sorry for the stupid question, but why is the slope equation y = s(x + 1) ? I thought y = mx + b....how did we determine that the slope (s) is the y-intercept (b)?
@ikavodo
@ikavodo 4 жыл бұрын
This a specific linear equation for a line with slope s passing through the point (-1,0). We have s= (y - y0)/ (x - x0), so simply plug in P's coordinates to get y = s(x + 1)
@TheMartian11
@TheMartian11 3 жыл бұрын
Well, in Europe and America usually only the y-intercept form is only taught, which is y=mx+c, where c is the y-intercept. there's actually another form you can derive using the x-intercept instead, which is y=m(x-d) where d is the x-intercept. the guy said m=s and d=-1 hence, y=s(x+1)
@MK-13337
@MK-13337 3 жыл бұрын
Starting from (-1,0) the slope is just rise/run. So when you go an unit length in x (from -1 to 0) you go up (or down) a length equal to the slope. So your coordinates after a unit step in the x direction will be (0,s) giving you the y intercept as s.
@kidzbop38isstraightfire92
@kidzbop38isstraightfire92 3 жыл бұрын
Thanks everyone for the help! After reading your replies, I realize how elementary this was 🤦‍♂️
@danlds17
@danlds17 Жыл бұрын
Another stupid question: Why didn't you start with a more general 2-variable cubic (which includes y^3) ? Excellent talk !
@darylcooper6090
@darylcooper6090 4 жыл бұрын
Wonderful lecture !
@kamilziemian995
@kamilziemian995 3 жыл бұрын
Clear, interesting lecture that is pleasure to hear.
@kamilziemian995
@kamilziemian995 3 жыл бұрын
Excuse me, in the description in the title of third lecture (this lecture) is "Birch--Swinnerton-Dyer". I believe that is a type and it should be "Birch-Swinnerton-Dyer", with one "-" removed.
@Darrida
@Darrida 11 ай бұрын
Sir Peter Swinnerton-Dyer is English baronet.
@kamilziemian995
@kamilziemian995 11 ай бұрын
@@Darrida Thank you for pointing it to me.
@sunshine4164
@sunshine4164 3 жыл бұрын
His silence speaks more than his words. How is he at computers ?
@madvoice3703
@madvoice3703 3 жыл бұрын
THE RIGHT STATEMENT IS BEABLE PRIZE
@indranilbiswas629
@indranilbiswas629 3 жыл бұрын
Nice ❤️
@dr.rahulgupta7573
@dr.rahulgupta7573 4 жыл бұрын
अद्भुत अति अद्भुत ।डा राहुल ।
@fabiangn8022
@fabiangn8022 Жыл бұрын
Gracias por compartir
@grimaffiliations3671
@grimaffiliations3671 3 жыл бұрын
No idea what I’m doing here, don’t even know my fractions
@christopherc168
@christopherc168 6 ай бұрын
You can learn, keep asking stupid questions , fail and fuck up till you dont , wisdom comes from experience, experience comes from good and bad judgement, the path to knowing and understanding is endless.
@thdgus7895
@thdgus7895 Жыл бұрын
La démonstration de π(1-ap/P)? Soit la serie Fp(k)=1/2^k+1/3^k + 1/5^k''''''''' vers l infini la série des premiers quelques soit k de N π(1-1/p^k)=1-Fp(k)+la somme de 1 vers l infini de 1/p^n×fp(P+n) et la somme de 1/p^n×fp(P+n)=1/2fp(k)^2 - 1/2 Fp(2k) d ou π(1-1/p^k)=1-fp(k) +1/2fp(k)^2 -1/2fp(2k) quelques que soit k dans N il y a cette égalité ' on peut vérifier π(1-1/p^k)=e^lnπ(1-1/p^k)=e^-fp(k)-@ le symbole @ le Epsilons donc π(1-1/p^k)=e^-fp(k)-@=1-fp(k)+1/2fp(k)^2 -1/2fp(2k) quelques soit k dans N pour le produit π(1-ap/p)=1/Le(1)=e^lnπ(1-ap/p)=e^-Lp(1)-@ d ou Lp(1)= lnLE(1)/e^@ d ou π(1-ap/p)=1/2(Lp(1)-1)^2 +1/2(1-Lp(2))=t(ln(Le(1))^2 l égalité π(1-1/p^k) =1-fp(k)+1/2fp(k)^2+1/2fp(2k)=e^-fp(k)-@ est valable quelque soit k appartient à N
@LolIGuess123
@LolIGuess123 3 жыл бұрын
I think the mic used in the seminar is too close to the mouth, lots of lip smacking and breathing distracts from the talking. Maybe run an EQ over the audio and filter the high frequencies
@wtpollard
@wtpollard 3 жыл бұрын
Not a helpful comment. Do you really think the people who organized this lecture are reading these KZbin comments?
@famousrapper8561
@famousrapper8561 2 жыл бұрын
I love lipsmacking
@poodook
@poodook 6 ай бұрын
@@wtpollardwas your comment any more helpful?
@success_habbit469
@success_habbit469 3 жыл бұрын
i am not kidding. this problem is going to be solved in upcoming 2 years.project is on progress. believe me
@magisterialanubis06
@magisterialanubis06 9 ай бұрын
guess not
@MohammedFahim-kz1pb
@MohammedFahim-kz1pb Ай бұрын
Lol
James Arthur: The Langlands program: arithmetic, geometry and analysis
56:38
Andrew Wiles: Fermat's Last theorem: abelian and non-abelian approaches
53:12
Sigma Kid Mistake #funny #sigma
00:17
CRAZY GREAPA
Рет қаралды 30 МЛН
Chain Game Strong ⛓️
00:21
Anwar Jibawi
Рет қаралды 41 МЛН
The Best Band 😅 #toshleh #viralshort
00:11
Toshleh
Рет қаралды 22 МЛН
Andrew Wiles, Twenty years of the Birch--Swinnerton-Dyer conjecture
59:47
Clay Mathematics Institute
Рет қаралды 14 М.
Edward Frenkel: Langlands Program and Unification
58:07
The Abel Prize
Рет қаралды 47 М.
Manjul Bhargava, What is the Birch and Swinnerton-Dyer conjecture and what is known about it?
1:07:45
Terence Tao at IMO 2024: AI and Mathematics
57:24
AIMO Prize
Рет қаралды 705 М.
Andrew Wiles - The Abel Prize interview 2016
59:02
The Abel Prize
Рет қаралды 206 М.
What is the Birch and Swinnerton-Dyer Conjecture? - Manjul Bhargava [2016]
1:07:45
Robert Langlands: On the Geometric Theory
42:44
The Abel Prize
Рет қаралды 25 М.
A Tribute to Euler - William Dunham
55:08
PoincareDuality
Рет қаралды 343 М.
7 Outside The Box Puzzles
12:16
MindYourDecisions
Рет қаралды 165 М.
Sigma Kid Mistake #funny #sigma
00:17
CRAZY GREAPA
Рет қаралды 30 МЛН