My dude, I don't often need your teachings, but when I do you are able to single-handedly overshadow most of my past professors. I've watched in the past 4 years a good chunk of your videos and you didn't do a single one in which I didn't add some new view, even if small, on the topic. Keep it up with the work.
@cissygu40883 жыл бұрын
I had two different university professors explaining MCMC, but I didn't quite get them until watching your video! Best explanation ever!
@edwardhartz10292 жыл бұрын
You have a gift for explaining things. Every question that pops into my head gets immediately answered.
@ritvikmath2 жыл бұрын
Thanks!
@tomleyshon86103 жыл бұрын
Fantastic! Note the lack of cuts and edits - this guy knows his stuff.
@baoanhvu83564 жыл бұрын
I gotta say your videos have been super helpful for a stats subject I took last semester (which involved time series, ARIMA model, stationarity etc.) and now MCMC came out at the perfect timing. You have such a gift for explaining the intuition behind statistical concepts, and I'm looking forward to future videos from you. Your channel is a treasure!
@ritvikmath4 жыл бұрын
Glad I could help!
@cao2106 Жыл бұрын
Does anyone have a python code that uses MCMC to predict closing prices? Can I have it, thanks
@trong94023 жыл бұрын
I don't know what it is, but i really like this guy. Clearly knows his stuff and articulate too. Great presentation, thank you
@catherinepuellomora8041 Жыл бұрын
I have been reading a 37 pages paper without understand a thing for two hours, and you've been clear in 12 mins¡¡¡ amazing job, many thanks
@arrau083 жыл бұрын
Thank you so much, I'm a scientist myself and have used some mcmc package blindly. Now, applying what I have been doing to every step of this video made me understand the full concept super clearly.
@jamesmckenna61653 жыл бұрын
Really excellent series of videos - been scratching my head over sampling methods for ages, but you explain it so succinctly and clearly it is finally making sense. Thanks for these!
@ritvikmath3 жыл бұрын
Glad to help!
@mk_upo2 жыл бұрын
Your channel is so underrated, you are making absolutely sick content!
@songchaerin54073 жыл бұрын
I'm very impressed to how clear the explanation is.
@tianjoshua40793 жыл бұрын
Hi Ritvik, your explanations are great in many ways. One of the best things is they are very logically coherent, leaving no gaps that require the listener to figure out. Please do keep up the splendid work. This is a major good deed for so many.
@ritvikmath3 жыл бұрын
Thanks a ton!
@dhinas94442 жыл бұрын
Exactly. Was about to write the same thing!
@murphp1513 жыл бұрын
I've watch a load of your videos in the last 4 or 5 days. They are absolutely brilliant!!
@rahul-qo3fi3 жыл бұрын
wow!! The continuity in the explanation is just phenomenal , thanks a ton!
@fdsfkdj3 жыл бұрын
finally someone explained why we need markov chain. thank you!
@XxPaRaZiTzZxX3 жыл бұрын
You're an awesome professor. I have finally understood MCMC and Metropolis Hastings thanks to you
@proxyme36282 жыл бұрын
Thanks for making this video. Finally came across the one that explain MCMC in plain words without dumping math formulas. Hope other videos and articles in follow this.
@chuckbecker4983 Жыл бұрын
You, Sir, are a brilliant instructor...I am awed. Thank you!
@paultrow72663 жыл бұрын
Great video! Much clearer than anything else I've seen or read about MCMC.
@香港地舖購物2 жыл бұрын
Without your video, I think I will never understand the key idea behind MCMC ! Thanks for the good work...
@cianr84522 жыл бұрын
This video has significantly improved my base understanding of MCMC, thank you so much
@cementheed3 жыл бұрын
Dude! That was the clearest explanation of MCMC I've ever heard. Thanks!
@itdepends59062 жыл бұрын
One of my favorite guys. Has a great knack for knowing the right balance of intuition and rigor/formal definitions.
@thisisadiman Жыл бұрын
I have never seen such an in-depth explanation of the MCMC! Thanks a lot bro.
@cao2106 Жыл бұрын
Do you have any python code that uses MCMC to predict closing prices? Can I have it, thanks
@daveamiana7784 жыл бұрын
I found this series on MCMC really helpful for my project! Thank you for your very kind support in giving good content.
@ritvikmath4 жыл бұрын
Great to hear!
@andrashorvath241111 ай бұрын
You are a great presenter, it is very easy to follow you, clean logic of how you build up the reasoning step by step, I like it very much, thank you.
@prashantkumar-ue7up4 жыл бұрын
The interpretation of this entire series is very helpful to understand these topics. Could you please make a video on Bayesian Regression using MCMC
@MiaoQin-m2u4 ай бұрын
Thanks for sharing. I begin to love learning.
@yulinliu8504 жыл бұрын
Awesome! Looking forward to more on McMC.
@ritvikmath4 жыл бұрын
More to come!
@skate456park3 жыл бұрын
This is going to be super helpful for a future interview :) Thanks!
@kylec18132 жыл бұрын
Great stuff. I'll be running through all your videos.
@faijro92603 ай бұрын
At the very end it took me a second watch to realize that of course the sum of all probabilities for x given y would be 1 and thus you would get p(y) on the right hand (so obvious when you type it out :') ). Once again a great video. I think you really hit a sweet spot where people with basic math skills, can benefit from your succinct yet in depth explanations.
@upasanapanigrahi4796Ай бұрын
Thanks for explaining beautifully.
@zalooooo3 жыл бұрын
fantastic. are you just going through chris bishops book and making videos to help us out? i'm reading it atm and keep finding content on your channel. it really is quite helpful in providing intuition for a very dense subject
@hochungyip11237 ай бұрын
a complement about why detailed balanced condition is valid if a distribution is stationary, it's because of bayesian statistics. recall the equation P(a|b) = P(b|a)p(a)/p(b), some rearrangement we get: p(b)P(a|b) = p(a)P(b|a) if it's in stationary, p(a) and p(b) are const, then the equation holds, we call it detailed balanced conditon.
@MohammadYoussof3 жыл бұрын
Very clear description. Thank you!
@ankushkothiyal53722 жыл бұрын
That clears everything, thank you.
@pavybez3 жыл бұрын
I like the way you teach. Thanks for these videos.
@geoffreyanderson47192 жыл бұрын
I expect by watching this video, the percent successful uptake of this material for me is so much better than any textbook alone. YT and presenters like ritvikmath is the way to learn new STEM stuff for sure. Much faster and easier, this way. It's like when they finally translated the Bible from Latin to English, and now I'm not needing to suffer with the Latin version any more. haha
@dragolov8 ай бұрын
You are great teacher! Deep respect!
@jaquelinemoreira73854 ай бұрын
This video just save my day
@ritvikmath4 ай бұрын
You're so welcome!
@PatrickSVM2 жыл бұрын
Thanks, very informative! I really like the way you explain things.
@gaprof43002 ай бұрын
REQUEST: Please organize this playlist in sequential / logical order. Example: The first video of this playlist is Markov Chains (MCMC) which refers to a previous video for accept-reject sampling; but that video is 13th in this playlist. So it's like watching random stuff here.
@maxgotts58952 жыл бұрын
Shit… good stuff! I've just gone through 4 of your videos instead of going to pick up dinner. Bravo sir!
@SnoZe95 Жыл бұрын
That's a very clear explanation. Thank you bro
@xiaoweidu46672 жыл бұрын
This guy is really fantastic
@matthiasgrossglauser3595Ай бұрын
Very nice way of introducing the topic. It might be worth pointing out that the detailed balance equations are a sufficient condition for stationarity (reversible chain), but not a necessary condition.
@seminkwak2 жыл бұрын
this is an amazing explanation!
@HCTripleCАй бұрын
This video is awesome, thank you!!!
@user-wr4yl7tx3w2 жыл бұрын
Brilliant. One word.
@danielwiczew4 жыл бұрын
Urging for it more than for a new Netflix series!
@kirillolkhovsky91602 жыл бұрын
bro you litterly saving lifes hear thx
@lennyatomz83893 жыл бұрын
Thank you for making this video! Your explanation is superb and easy to follow. Much appreciated!!
@Oceansteve2 жыл бұрын
Thanks for this, really enjoyed your explination
@hadeerahmed24772 жыл бұрын
I love your videos and you really simplify concepts , my only comment is sometimes I get confused or don’t know applications for the concept
@zhixiangwang71652 жыл бұрын
Great lectures! Awesome!
@lauravargasgonzalez93172 жыл бұрын
Amazing !
@yinstube4 жыл бұрын
Hey your videos are the best!
@ritvikmath4 жыл бұрын
Yin! Thanks :D
@stefan51282 жыл бұрын
Fantastic explanation! Now I got all the intuition I need to work through the formulas in our lecture :)
@outtaspacetime2 жыл бұрын
exceptional content!
@alaasmarneh78113 жыл бұрын
Thank you, this helped me a lot
@alexiapr98612 жыл бұрын
Clear. Thank you.
@itsrainbowoutside Жыл бұрын
Thank you! Very helpful for me.
@ritvikmath Жыл бұрын
You're welcome!
@raveeshaperera38294 жыл бұрын
Thank you so much for this video. This is really helpful for my undergraduate research work. One thing I'm finding difficult to understand is, why do we use "thinning" in MCMC ? From what I have read so far, it aims to reduce autocorrelation - but why? Please tell me your thoughts on this problem. I appreciate it a lot. TIA
@purefeel2 жыл бұрын
I wish Ian Goodfellow's book explained MCMC like you do. And I wish my professors back in university can teach and give intuition like this video. I would have been much more interested in stats and data science if it was taught properly.
@OwenMcKinley3 жыл бұрын
I'm speechless; your presenting style and explanatory power is insane!!! Thank you so much, I'm just getting into this stuff and the reading is tricky Liked, subbed, etc. 👍👌😁
@richardbabley25444 жыл бұрын
So the Monte Carlo part refers to the eventual sampling from the stationary Markov Chain? I kind of missed where it comes in, except for the board title.
@ritvikmath4 жыл бұрын
The Monte Carlo part refers to simulating steps through the Markov Chain. So we design a Markov Chain with some transition probabilities and then we start at some x0 and step from one state to the next which is the Monte Carlo part.
@faresziad7593 Жыл бұрын
Excellent pédagogue
@porelort09 Жыл бұрын
Thank you!
@TheNazem Жыл бұрын
it's fun to stay at the mcmc
@priyankakaswan75283 жыл бұрын
you are god send!
@SpazioAlpha2 жыл бұрын
Thanks again!
@brofessorsbooks33523 жыл бұрын
KING you are KING
@sorsdeus3 жыл бұрын
What a great video.
@muhammadibrahim76686 ай бұрын
I like your concepts. Do you have any reference (books) for citation, if I want to add your formulae in my presentation for reference.
@landmaster420 Жыл бұрын
Great video! Really liked the high-level explanation to get us comfortable with the ideas behind these methods. Quick question: I'm assuming we don't know p(x), so how do we construct a stationary distribution about p(x)?
@sharmilakarumuri60504 жыл бұрын
Awesome thanks a tonne waiting for further videos on mcmc, could you please do a video on hamiltonian monte carlo too
@ritvikmath4 жыл бұрын
Great suggestion!
@shivampatel89284 жыл бұрын
Very useful!
@ritvikmath4 жыл бұрын
Glad you think so!
@1217Yangli3 жыл бұрын
Awesome
@nad41532 жыл бұрын
thank you so much
@wafike13 жыл бұрын
love the intro
@yoshcn Жыл бұрын
amzing channel thanks
@daalhead10988 күн бұрын
Video on Copulas please
@thepenghouse3 жыл бұрын
you're a legend
@Jamesssssssssssssss2 жыл бұрын
I'm just here because there is a gun in Destiny 2 call Monte Carlo, which in turn has a perk called Markov Chain. I get why it was called that now
@ritvikmath2 жыл бұрын
Lol
@Jamesssssssssssssss2 жыл бұрын
@@ritvikmath I watched the whole video, really well done. While most of it went over my head, the concept was well explained.
@moimonalisa51292 жыл бұрын
I get a philosophy from here. The objective is actually is to design the appropriate transition probability. It's like to build work out and healthy eating habit if you want a body goals.
@ritvikmath2 жыл бұрын
Perfect analogy!
@jordanwilson82772 жыл бұрын
Any chance of doing the EM algorithm?
@zareef5583 Жыл бұрын
Loved your explanation but can you please organise the videos I need to see serially before watching the "Markov Chain Monte Carlo (MCMC) : Data Science Concepts" video. All the videos are scattered all over the place.
@aminmohammadigolafshani20152 жыл бұрын
How do we know the p(x) that should be the steady state of our MC? because I think the p(x) is the black box that we do not know and wants to sample from it to find it. If we have p(x), what is the obstacle against us that prevent us from sampling from it? This is a little bit confusing for me in all sampling videos on KZbin.
@samson67073 ай бұрын
the hat is dope
@soqjqxobfw12 күн бұрын
Im using this playlist as support material in CS229 in 2025.
@graceguo52882 жыл бұрын
Question - where does the first sample come from?
@itsgerm21833 жыл бұрын
@ritvikmath by any chance would you happen to have some notes presenting the topic in more depth? I have a general idea of the method but having trouble wrapping my head around some methods presented in papers. If not, its okay!
@ninadpimparkar90353 жыл бұрын
When are you going to do Hamilton MCMC? Its so hard to understand.
@honshingandrewli76322 жыл бұрын
Can you do a lesson on Gaussian Copula, please?
@bezaeshetu54542 жыл бұрын
Thank you, you are always the best. I am working on Bayesian network structure learning using Gibbs sampling, Could you suggest the best book or video which will help me to go through this please. Thank you.
@Pmaisterify2 жыл бұрын
Really great video. A quick question though, what if I want to approximate f(x)? Currently I am using a form of MCMC to do this to estimate the state probability of n samples.
@mohammadmansouri59311 ай бұрын
So usefull
@paultrow72663 жыл бұрын
At 6:55 you say "The probability that x_B is any of these x's on this line is exactly the probability p(x)." What does this mean? It sounds like you're saying that for any number x on the line, the probability that x_B = x is p(x). But the possible values of the Markov chain form a countable set, so for any x that's not in this countable set (which is almost all points on the line) x doesn't equal any x_B. I think by "any of these x's on this line" you mean just the x values that occur in the Markov chain.
@geoffreyanderson47192 жыл бұрын
How exactly should the end of the burn in be detected and decided by an iterative algorithm, when it's a random variable that is being monitored, and it is therefore jumping around (so you can't see if it goes flat compared to prior values) and you don't even have the truth value to compare with, because otherwise you'd already have your goal in hand at the very beginning?