Markov Chain Monte Carlo (MCMC) : Data Science Concepts

  Рет қаралды 234,230

ritvikmath

ritvikmath

Күн бұрын

Пікірлер: 140
@gufo__4922
@gufo__4922 6 ай бұрын
My dude, I don't often need your teachings, but when I do you are able to single-handedly overshadow most of my past professors. I've watched in the past 4 years a good chunk of your videos and you didn't do a single one in which I didn't add some new view, even if small, on the topic. Keep it up with the work.
@cissygu4088
@cissygu4088 3 жыл бұрын
I had two different university professors explaining MCMC, but I didn't quite get them until watching your video! Best explanation ever!
@edwardhartz1029
@edwardhartz1029 2 жыл бұрын
You have a gift for explaining things. Every question that pops into my head gets immediately answered.
@ritvikmath
@ritvikmath 2 жыл бұрын
Thanks!
@tomleyshon8610
@tomleyshon8610 3 жыл бұрын
Fantastic! Note the lack of cuts and edits - this guy knows his stuff.
@baoanhvu8356
@baoanhvu8356 4 жыл бұрын
I gotta say your videos have been super helpful for a stats subject I took last semester (which involved time series, ARIMA model, stationarity etc.) and now MCMC came out at the perfect timing. You have such a gift for explaining the intuition behind statistical concepts, and I'm looking forward to future videos from you. Your channel is a treasure!
@ritvikmath
@ritvikmath 4 жыл бұрын
Glad I could help!
@cao2106
@cao2106 Жыл бұрын
Does anyone have a python code that uses MCMC to predict closing prices? Can I have it, thanks
@trong9402
@trong9402 3 жыл бұрын
I don't know what it is, but i really like this guy. Clearly knows his stuff and articulate too. Great presentation, thank you
@catherinepuellomora8041
@catherinepuellomora8041 Жыл бұрын
I have been reading a 37 pages paper without understand a thing for two hours, and you've been clear in 12 mins¡¡¡ amazing job, many thanks
@arrau08
@arrau08 3 жыл бұрын
Thank you so much, I'm a scientist myself and have used some mcmc package blindly. Now, applying what I have been doing to every step of this video made me understand the full concept super clearly.
@jamesmckenna6165
@jamesmckenna6165 3 жыл бұрын
Really excellent series of videos - been scratching my head over sampling methods for ages, but you explain it so succinctly and clearly it is finally making sense. Thanks for these!
@ritvikmath
@ritvikmath 3 жыл бұрын
Glad to help!
@mk_upo
@mk_upo 2 жыл бұрын
Your channel is so underrated, you are making absolutely sick content!
@songchaerin5407
@songchaerin5407 3 жыл бұрын
I'm very impressed to how clear the explanation is.
@tianjoshua4079
@tianjoshua4079 3 жыл бұрын
Hi Ritvik, your explanations are great in many ways. One of the best things is they are very logically coherent, leaving no gaps that require the listener to figure out. Please do keep up the splendid work. This is a major good deed for so many.
@ritvikmath
@ritvikmath 3 жыл бұрын
Thanks a ton!
@dhinas9444
@dhinas9444 2 жыл бұрын
Exactly. Was about to write the same thing!
@murphp151
@murphp151 3 жыл бұрын
I've watch a load of your videos in the last 4 or 5 days. They are absolutely brilliant!!
@rahul-qo3fi
@rahul-qo3fi 3 жыл бұрын
wow!! The continuity in the explanation is just phenomenal , thanks a ton!
@fdsfkdj
@fdsfkdj 3 жыл бұрын
finally someone explained why we need markov chain. thank you!
@XxPaRaZiTzZxX
@XxPaRaZiTzZxX 3 жыл бұрын
You're an awesome professor. I have finally understood MCMC and Metropolis Hastings thanks to you
@proxyme3628
@proxyme3628 2 жыл бұрын
Thanks for making this video. Finally came across the one that explain MCMC in plain words without dumping math formulas. Hope other videos and articles in follow this.
@chuckbecker4983
@chuckbecker4983 Жыл бұрын
You, Sir, are a brilliant instructor...I am awed. Thank you!
@paultrow7266
@paultrow7266 3 жыл бұрын
Great video! Much clearer than anything else I've seen or read about MCMC.
@香港地舖購物
@香港地舖購物 2 жыл бұрын
Without your video, I think I will never understand the key idea behind MCMC ! Thanks for the good work...
@cianr8452
@cianr8452 2 жыл бұрын
This video has significantly improved my base understanding of MCMC, thank you so much
@cementheed
@cementheed 3 жыл бұрын
Dude! That was the clearest explanation of MCMC I've ever heard. Thanks!
@itdepends5906
@itdepends5906 2 жыл бұрын
One of my favorite guys. Has a great knack for knowing the right balance of intuition and rigor/formal definitions.
@thisisadiman
@thisisadiman Жыл бұрын
I have never seen such an in-depth explanation of the MCMC! Thanks a lot bro.
@cao2106
@cao2106 Жыл бұрын
Do you have any python code that uses MCMC to predict closing prices? Can I have it, thanks
@daveamiana778
@daveamiana778 4 жыл бұрын
I found this series on MCMC really helpful for my project! Thank you for your very kind support in giving good content.
@ritvikmath
@ritvikmath 4 жыл бұрын
Great to hear!
@andrashorvath2411
@andrashorvath2411 11 ай бұрын
You are a great presenter, it is very easy to follow you, clean logic of how you build up the reasoning step by step, I like it very much, thank you.
@prashantkumar-ue7up
@prashantkumar-ue7up 4 жыл бұрын
The interpretation of this entire series is very helpful to understand these topics. Could you please make a video on Bayesian Regression using MCMC
@MiaoQin-m2u
@MiaoQin-m2u 4 ай бұрын
Thanks for sharing. I begin to love learning.
@yulinliu850
@yulinliu850 4 жыл бұрын
Awesome! Looking forward to more on McMC.
@ritvikmath
@ritvikmath 4 жыл бұрын
More to come!
@skate456park
@skate456park 3 жыл бұрын
This is going to be super helpful for a future interview :) Thanks!
@kylec1813
@kylec1813 2 жыл бұрын
Great stuff. I'll be running through all your videos.
@faijro9260
@faijro9260 3 ай бұрын
At the very end it took me a second watch to realize that of course the sum of all probabilities for x given y would be 1 and thus you would get p(y) on the right hand (so obvious when you type it out :') ). Once again a great video. I think you really hit a sweet spot where people with basic math skills, can benefit from your succinct yet in depth explanations.
@upasanapanigrahi4796
@upasanapanigrahi4796 Ай бұрын
Thanks for explaining beautifully.
@zalooooo
@zalooooo 3 жыл бұрын
fantastic. are you just going through chris bishops book and making videos to help us out? i'm reading it atm and keep finding content on your channel. it really is quite helpful in providing intuition for a very dense subject
@hochungyip1123
@hochungyip1123 7 ай бұрын
a complement about why detailed balanced condition is valid if a distribution is stationary, it's because of bayesian statistics. recall the equation P(a|b) = P(b|a)p(a)/p(b), some rearrangement we get: p(b)P(a|b) = p(a)P(b|a) if it's in stationary, p(a) and p(b) are const, then the equation holds, we call it detailed balanced conditon.
@MohammadYoussof
@MohammadYoussof 3 жыл бұрын
Very clear description. Thank you!
@ankushkothiyal5372
@ankushkothiyal5372 2 жыл бұрын
That clears everything, thank you.
@pavybez
@pavybez 3 жыл бұрын
I like the way you teach. Thanks for these videos.
@geoffreyanderson4719
@geoffreyanderson4719 2 жыл бұрын
I expect by watching this video, the percent successful uptake of this material for me is so much better than any textbook alone. YT and presenters like ritvikmath is the way to learn new STEM stuff for sure. Much faster and easier, this way. It's like when they finally translated the Bible from Latin to English, and now I'm not needing to suffer with the Latin version any more. haha
@dragolov
@dragolov 8 ай бұрын
You are great teacher! Deep respect!
@jaquelinemoreira7385
@jaquelinemoreira7385 4 ай бұрын
This video just save my day
@ritvikmath
@ritvikmath 4 ай бұрын
You're so welcome!
@PatrickSVM
@PatrickSVM 2 жыл бұрын
Thanks, very informative! I really like the way you explain things.
@gaprof4300
@gaprof4300 2 ай бұрын
REQUEST: Please organize this playlist in sequential / logical order. Example: The first video of this playlist is Markov Chains (MCMC) which refers to a previous video for accept-reject sampling; but that video is 13th in this playlist. So it's like watching random stuff here.
@maxgotts5895
@maxgotts5895 2 жыл бұрын
Shit… good stuff! I've just gone through 4 of your videos instead of going to pick up dinner. Bravo sir!
@SnoZe95
@SnoZe95 Жыл бұрын
That's a very clear explanation. Thank you bro
@xiaoweidu4667
@xiaoweidu4667 2 жыл бұрын
This guy is really fantastic
@matthiasgrossglauser3595
@matthiasgrossglauser3595 Ай бұрын
Very nice way of introducing the topic. It might be worth pointing out that the detailed balance equations are a sufficient condition for stationarity (reversible chain), but not a necessary condition.
@seminkwak
@seminkwak 2 жыл бұрын
this is an amazing explanation!
@HCTripleC
@HCTripleC Ай бұрын
This video is awesome, thank you!!!
@user-wr4yl7tx3w
@user-wr4yl7tx3w 2 жыл бұрын
Brilliant. One word.
@danielwiczew
@danielwiczew 4 жыл бұрын
Urging for it more than for a new Netflix series!
@kirillolkhovsky9160
@kirillolkhovsky9160 2 жыл бұрын
bro you litterly saving lifes hear thx
@lennyatomz8389
@lennyatomz8389 3 жыл бұрын
Thank you for making this video! Your explanation is superb and easy to follow. Much appreciated!!
@Oceansteve
@Oceansteve 2 жыл бұрын
Thanks for this, really enjoyed your explination
@hadeerahmed2477
@hadeerahmed2477 2 жыл бұрын
I love your videos and you really simplify concepts , my only comment is sometimes I get confused or don’t know applications for the concept
@zhixiangwang7165
@zhixiangwang7165 2 жыл бұрын
Great lectures! Awesome!
@lauravargasgonzalez9317
@lauravargasgonzalez9317 2 жыл бұрын
Amazing !
@yinstube
@yinstube 4 жыл бұрын
Hey your videos are the best!
@ritvikmath
@ritvikmath 4 жыл бұрын
Yin! Thanks :D
@stefan5128
@stefan5128 2 жыл бұрын
Fantastic explanation! Now I got all the intuition I need to work through the formulas in our lecture :)
@outtaspacetime
@outtaspacetime 2 жыл бұрын
exceptional content!
@alaasmarneh7811
@alaasmarneh7811 3 жыл бұрын
Thank you, this helped me a lot
@alexiapr9861
@alexiapr9861 2 жыл бұрын
Clear. Thank you.
@itsrainbowoutside
@itsrainbowoutside Жыл бұрын
Thank you! Very helpful for me.
@ritvikmath
@ritvikmath Жыл бұрын
You're welcome!
@raveeshaperera3829
@raveeshaperera3829 4 жыл бұрын
Thank you so much for this video. This is really helpful for my undergraduate research work. One thing I'm finding difficult to understand is, why do we use "thinning" in MCMC ? From what I have read so far, it aims to reduce autocorrelation - but why? Please tell me your thoughts on this problem. I appreciate it a lot. TIA
@purefeel
@purefeel 2 жыл бұрын
I wish Ian Goodfellow's book explained MCMC like you do. And I wish my professors back in university can teach and give intuition like this video. I would have been much more interested in stats and data science if it was taught properly.
@OwenMcKinley
@OwenMcKinley 3 жыл бұрын
I'm speechless; your presenting style and explanatory power is insane!!! Thank you so much, I'm just getting into this stuff and the reading is tricky Liked, subbed, etc. 👍👌😁
@richardbabley2544
@richardbabley2544 4 жыл бұрын
So the Monte Carlo part refers to the eventual sampling from the stationary Markov Chain? I kind of missed where it comes in, except for the board title.
@ritvikmath
@ritvikmath 4 жыл бұрын
The Monte Carlo part refers to simulating steps through the Markov Chain. So we design a Markov Chain with some transition probabilities and then we start at some x0 and step from one state to the next which is the Monte Carlo part.
@faresziad7593
@faresziad7593 Жыл бұрын
Excellent pédagogue
@porelort09
@porelort09 Жыл бұрын
Thank you!
@TheNazem
@TheNazem Жыл бұрын
it's fun to stay at the mcmc
@priyankakaswan7528
@priyankakaswan7528 3 жыл бұрын
you are god send!
@SpazioAlpha
@SpazioAlpha 2 жыл бұрын
Thanks again!
@brofessorsbooks3352
@brofessorsbooks3352 3 жыл бұрын
KING you are KING
@sorsdeus
@sorsdeus 3 жыл бұрын
What a great video.
@muhammadibrahim7668
@muhammadibrahim7668 6 ай бұрын
I like your concepts. Do you have any reference (books) for citation, if I want to add your formulae in my presentation for reference.
@landmaster420
@landmaster420 Жыл бұрын
Great video! Really liked the high-level explanation to get us comfortable with the ideas behind these methods. Quick question: I'm assuming we don't know p(x), so how do we construct a stationary distribution about p(x)?
@sharmilakarumuri6050
@sharmilakarumuri6050 4 жыл бұрын
Awesome thanks a tonne waiting for further videos on mcmc, could you please do a video on hamiltonian monte carlo too
@ritvikmath
@ritvikmath 4 жыл бұрын
Great suggestion!
@shivampatel8928
@shivampatel8928 4 жыл бұрын
Very useful!
@ritvikmath
@ritvikmath 4 жыл бұрын
Glad you think so!
@1217Yangli
@1217Yangli 3 жыл бұрын
Awesome
@nad4153
@nad4153 2 жыл бұрын
thank you so much
@wafike1
@wafike1 3 жыл бұрын
love the intro
@yoshcn
@yoshcn Жыл бұрын
amzing channel thanks
@daalhead1098
@daalhead1098 8 күн бұрын
Video on Copulas please
@thepenghouse
@thepenghouse 3 жыл бұрын
you're a legend
@Jamesssssssssssssss
@Jamesssssssssssssss 2 жыл бұрын
I'm just here because there is a gun in Destiny 2 call Monte Carlo, which in turn has a perk called Markov Chain. I get why it was called that now
@ritvikmath
@ritvikmath 2 жыл бұрын
Lol
@Jamesssssssssssssss
@Jamesssssssssssssss 2 жыл бұрын
@@ritvikmath I watched the whole video, really well done. While most of it went over my head, the concept was well explained.
@moimonalisa5129
@moimonalisa5129 2 жыл бұрын
I get a philosophy from here. The objective is actually is to design the appropriate transition probability. It's like to build work out and healthy eating habit if you want a body goals.
@ritvikmath
@ritvikmath 2 жыл бұрын
Perfect analogy!
@jordanwilson8277
@jordanwilson8277 2 жыл бұрын
Any chance of doing the EM algorithm?
@zareef5583
@zareef5583 Жыл бұрын
Loved your explanation but can you please organise the videos I need to see serially before watching the "Markov Chain Monte Carlo (MCMC) : Data Science Concepts" video. All the videos are scattered all over the place.
@aminmohammadigolafshani2015
@aminmohammadigolafshani2015 2 жыл бұрын
How do we know the p(x) that should be the steady state of our MC? because I think the p(x) is the black box that we do not know and wants to sample from it to find it. If we have p(x), what is the obstacle against us that prevent us from sampling from it? This is a little bit confusing for me in all sampling videos on KZbin.
@samson6707
@samson6707 3 ай бұрын
the hat is dope
@soqjqxobfw
@soqjqxobfw 12 күн бұрын
Im using this playlist as support material in CS229 in 2025.
@graceguo5288
@graceguo5288 2 жыл бұрын
Question - where does the first sample come from?
@itsgerm2183
@itsgerm2183 3 жыл бұрын
@ritvikmath by any chance would you happen to have some notes presenting the topic in more depth? I have a general idea of the method but having trouble wrapping my head around some methods presented in papers. If not, its okay!
@ninadpimparkar9035
@ninadpimparkar9035 3 жыл бұрын
When are you going to do Hamilton MCMC? Its so hard to understand.
@honshingandrewli7632
@honshingandrewli7632 2 жыл бұрын
Can you do a lesson on Gaussian Copula, please?
@bezaeshetu5454
@bezaeshetu5454 2 жыл бұрын
Thank you, you are always the best. I am working on Bayesian network structure learning using Gibbs sampling, Could you suggest the best book or video which will help me to go through this please. Thank you.
@Pmaisterify
@Pmaisterify 2 жыл бұрын
Really great video. A quick question though, what if I want to approximate f(x)? Currently I am using a form of MCMC to do this to estimate the state probability of n samples.
@mohammadmansouri593
@mohammadmansouri593 11 ай бұрын
So usefull
@paultrow7266
@paultrow7266 3 жыл бұрын
At 6:55 you say "The probability that x_B is any of these x's on this line is exactly the probability p(x)." What does this mean? It sounds like you're saying that for any number x on the line, the probability that x_B = x is p(x). But the possible values of the Markov chain form a countable set, so for any x that's not in this countable set (which is almost all points on the line) x doesn't equal any x_B. I think by "any of these x's on this line" you mean just the x values that occur in the Markov chain.
@geoffreyanderson4719
@geoffreyanderson4719 2 жыл бұрын
How exactly should the end of the burn in be detected and decided by an iterative algorithm, when it's a random variable that is being monitored, and it is therefore jumping around (so you can't see if it goes flat compared to prior values) and you don't even have the truth value to compare with, because otherwise you'd already have your goal in hand at the very beginning?
Metropolis - Hastings : Data Science Concepts
18:15
ritvikmath
Рет қаралды 112 М.
Accept-Reject Sampling : Data Science Concepts
17:49
ritvikmath
Рет қаралды 73 М.
번쩍번쩍 거리는 입
0:32
승비니 Seungbini
Рет қаралды 182 МЛН
Monte Carlo Simulations : Data Science Basics
19:14
ritvikmath
Рет қаралды 131 М.
Markov Chain Stationary Distribution : Data Science Concepts
17:33
Markov Chains Clearly Explained! Part - 1
9:24
Normalized Nerd
Рет қаралды 1,3 МЛН
Metropolis-Hastings - VISUALLY EXPLAINED!
24:45
Kapil Sachdeva
Рет қаралды 37 М.
Hidden Markov Model : Data Science Concepts
13:52
ritvikmath
Рет қаралды 135 М.
The intuition behind the Hamiltonian Monte Carlo algorithm
32:09
Ben Lambert
Рет қаралды 60 М.
11e Machine Learning: Markov Chain Monte Carlo
16:37
GeostatsGuy Lectures
Рет қаралды 50 М.
Markov Chains - VISUALLY EXPLAINED + History!
33:07
Kapil Sachdeva
Рет қаралды 16 М.
(ML 18.1) Markov chain Monte Carlo (MCMC) introduction
17:04
mathematicalmonk
Рет қаралды 199 М.
Markov Chains : Data Science Basics
10:24
ritvikmath
Рет қаралды 70 М.