Markov Decision Processes 1 - Value Iteration | Stanford CS221: AI (Autumn 2019)

  Рет қаралды 452,831

Stanford Online

Stanford Online

Күн бұрын

Пікірлер: 139
@nsubugakasozi7101
@nsubugakasozi7101 9 ай бұрын
This lecturer is world class...and this is also the most confident live coding I have seen in a while...she is really really good. Universities are made by the lecturers...not so much the name
@MLRTrytonix13
@MLRTrytonix13 Ай бұрын
live coding? its a video lmaoo
@foufayyy
@foufayyy 2 жыл бұрын
thank you for posting this. MDPs were really confusing and this lecture really helped me understand it clearly.
@-isotope_k
@-isotope_k 2 жыл бұрын
Yes this is very very confusing topic
@pirouzaan
@pirouzaan Жыл бұрын
this was by far the most impressive lecture with live coding that I had seen! I am leaving this virtual lecture room with awe and respect...
@meharjeetsingh5256
@meharjeetsingh5256 Жыл бұрын
this teacher is really really good. I wish you were at my Uni so that i could enjoy machine learning
@dawn-of-newday
@dawn-of-newday 2 жыл бұрын
I wanna appreciate this lecture, its good. i had a difficult time and mental block for this topic. I wanna say thanks for all ur efforts.
@vishalsunkapaka7247
@vishalsunkapaka7247 2 жыл бұрын
professor is so talented can’t say anything just feared over her, can’t take anymore
@WojciechBrzoska-w2s
@WojciechBrzoska-w2s Жыл бұрын
It was my n-th iteration of MDP -where n>10 but using terminology of of MDP my knowlege finnally started to converge to proper direction. Thank you for the lecture🙂
@iiilllii140
@iiilllii140 2 жыл бұрын
Thank you for this lecture and the course order. The past lectures about search problems really help you to better understand MDPs.
@seaotterlabs1685
@seaotterlabs1685 2 жыл бұрын
Amazing lecture! I was having trouble finding my footing on this topic and now I feel I have a good starting point of the concepts and notations! I hope Professor Sadigh teaches many more AI topics!
@stanfordonline
@stanfordonline 2 жыл бұрын
Excellent, thanks for your feedback!
@ibenlhafid
@ibenlhafid 2 жыл бұрын
Mm
@ibenlhafid
@ibenlhafid 2 жыл бұрын
Mmmm
@ibenlhafid
@ibenlhafid 2 жыл бұрын
Pp
@ibenlhafid
@ibenlhafid 2 жыл бұрын
09
@snsacharya1737
@snsacharya1737 Жыл бұрын
At 29:36, a policy is defined as a one-to-one mapping from the state space to the action space; for example, the policy when we are in station-4 is to walk. This definition is different compated to the one made in the classic RL book by Sutton and Barto; they define a policy as "a mapping from states to probabilities of selecting each possible action." For example, the policy when we are in station-4 is a 40% chance of walking and 60% chance of taking the train. The policy evaluation algorithm that is presented in this lecture also ends up being slightly different by not looping over the possible actions. It is nice of the instructor to highlight that point at 55:45
@aojing
@aojing 10 ай бұрын
Action is determined from the beginning independent of states in this class...This will mislead beginners to confuse Q and V, as by this definition @47:20. In RL, we take action by policy, which is random and can be learned/optimized by iterating through episodes, i.e., parallel worlds.
@chanliang5725
@chanliang5725 Жыл бұрын
I was lost on the MDP. Glad I find this awesome lecture clears all concepts in MDP! Very helpful!
@shaheerkashif5908
@shaheerkashif5908 21 күн бұрын
Professor Sadigh, the legend you are
@joshuat6124
@joshuat6124 9 ай бұрын
Thank you professor! I learnt to much from this, especially the live coding bits.
@muheedmir7385
@muheedmir7385 2 жыл бұрын
Amazing lecture, loved every bit of it
@quannmtt3110
@quannmtt3110 Жыл бұрын
Thanks for the awesome lecture. Very good job at explanation by the lecturer.
@tosinadekunle646
@tosinadekunle646 2 ай бұрын
Gamma is to avoid the neutrality of using 1 in the computation of Utility (The Return). 0.9^3 is not neutral compared to 1^3 which is neutral.
@yesodabhargava8776
@yesodabhargava8776 2 жыл бұрын
This is an awesome lecture! Thank you so much.
@adityanjsg99
@adityanjsg99 2 жыл бұрын
A thorough lecture!!
@carlosloria-saenz6760
@carlosloria-saenz6760 Жыл бұрын
Great videos, thanks!. At time 47:20 on the board a small typo, I guess it should be: V_{\pi}(s) = Q_{\pi}(s, \pi(s)) if s not the end state.
@ammaraboklam2487
@ammaraboklam2487 2 жыл бұрын
Thank you very much This is really great lecture it's really helpful
@stanfordonline
@stanfordonline 2 жыл бұрын
Hi Ammar, glad it was helpful! Thanks for your feedback
@sukhjinderkumar2723
@sukhjinderkumar2723 2 жыл бұрын
Great Lecture, Thank you Professor :)
@alemayehutesfaye463
@alemayehutesfaye463 Жыл бұрын
Thank you for your interesting lecture this lecture really helped me to understand it well.
@stanfordonline
@stanfordonline Жыл бұрын
Hi Alemayehu, thanks for your comment! Nice to hear you enjoyed this lecture.
@alemayehutesfaye463
@alemayehutesfaye463 Жыл бұрын
@@stanfordonline Thanks for your reply. I am following you from Ethiopia and had interest on the subject area. Would you mind in suggesting best texts and supporting video's which may be helpful to have in-depth knowledge in the areas of Markov Processes and decision making specially related to manufacturing industries?
@vimukthirandika872
@vimukthirandika872 2 жыл бұрын
Thank for amazing lecture!
@HarshvardhanKanthode
@HarshvardhanKanthode 2 жыл бұрын
Where are all the comments?
@mukhtarabdullahi1164
@mukhtarabdullahi1164 Ай бұрын
Amazing lecture. Thanks prof
@aojing
@aojing 10 ай бұрын
@47:20 the definition of Q function is not right and confuses with Value function. Specifically, take immediate reward R out of summation. The reason is Q function is to estimate the value of a specific Action beginning with current State.
@aojing
@aojing 10 ай бұрын
or we may say the Value function here is not properly defined without considering policy, i.e., by taking action independent of states.
@karimdarwich1913
@karimdarwich1913 6 ай бұрын
How can I choose the "right" gamma for my problem? Like how can I know that the gamma I choose is good or not ?
@marzmohammadi8739
@marzmohammadi8739 2 жыл бұрын
لذت بردم خانم صدیق. کیف کردم .. مممنووونننن
@RojinaPanta1
@RojinaPanta1 Жыл бұрын
would not removing constraint increase search space making computationally inefficent?
@FalguniDasShuvo
@FalguniDasShuvo 4 ай бұрын
Great!👍
@farzanzeinali7398
@farzanzeinali7398 2 жыл бұрын
The transportation example has a problem. The states are discrete. If you take the tram, the starting state equals 1, and with state*2, you will never end up in state=3. Let's assume the first action was successful, therefore, the next state is 2. If the second action is successful too, you will be end up in state = 4. you will never end up in state = 3.
@faiber49
@faiber49 2 ай бұрын
That is why she used this line of code when the actions where defined: if state * 2
@alphatensor
@alphatensor Жыл бұрын
Thanks for the good lecture
@Amit1994-g9i
@Amit1994-g9i 2 жыл бұрын
FYI I'm a theoretical physics major, and I have no business in CS and whatsoever
@msfallah
@msfallah 2 жыл бұрын
I think the given definition for value-action function (Q(s, action)) is not correct. In fact value function is the summation of value-action functions over all actions.
@camerashysd7165
@camerashysd7165 8 ай бұрын
Wow this account crazy 😮
@vikasshukla831
@vikasshukla831 2 жыл бұрын
Can in the Dice Game If choose to stay for the step 1 and then quit in the second stage: will I get 10 dollars if I choose to quit in the stage 2? Because If I am lucky enough to go to second stage i.e the dice doesn't roll 1,2 then I am in the "In" state and by the diagram I have option to quit which might give me 10 dollar but for that I should have success in stage 1. Then the best strategy might change. Let know what are your comments?
@fahimullahkhan775
@fahimullahkhan775 2 жыл бұрын
You are right according to the figure and flow of the states, but from the scenario ones get the perception that ones has a chance to either quit at the start or stay in the game.
@thalaivarda
@thalaivarda 2 жыл бұрын
I will be conducting a test for those watching the video.
@henkjekel4081
@henkjekel4081 2 жыл бұрын
U should look at andrew ng's lecture, he explains it way better
@md.naimul8544
@md.naimul8544 Жыл бұрын
why is she so beautiful 😳😳
@ameerhamza4816
@ameerhamza4816 Жыл бұрын
Why not?
@pythonmini7054
@pythonmini7054 2 жыл бұрын
Is it me or she looks like callie torres from grays anatomy 🤔
@dungeon1163
@dungeon1163 2 жыл бұрын
Only watching for educational purposes
@-isotope_k
@-isotope_k 2 жыл бұрын
😂😂
@mango-strawberry
@mango-strawberry 7 ай бұрын
😂😂. You know it.
@reyy9220
@reyy9220 Ай бұрын
can yall ever rest?? give women a break ffs
@mnnuila
@mnnuila 4 ай бұрын
Seems simple
@divyanshuy007
@divyanshuy007 2 жыл бұрын
16:42 thumbnail
@rahulkelkar1246
@rahulkelkar1246 2 жыл бұрын
Does anyone think she look like Zoe Kazan?
@HolyRamanRajya
@HolyRamanRajya 2 жыл бұрын
Beauty and brainy.
@vikranthrana3019
@vikranthrana3019 2 жыл бұрын
Professor is quite cute ❤️
@aswinbiju4038
@aswinbiju4038 2 жыл бұрын
Only watching for educational purposes.
@soham4741
@soham4741 2 жыл бұрын
yes me too
@vikranthrana3019
@vikranthrana3019 2 жыл бұрын
Me too
@radheshyamshaw8672
@radheshyamshaw8672 2 жыл бұрын
Me too
@saisriteja5290
@saisriteja5290 2 жыл бұрын
i love you
@sachinfulsunge9977
@sachinfulsunge9977 2 жыл бұрын
Hell naw bruh
@Naentrikakudapikalev
@Naentrikakudapikalev 2 жыл бұрын
Cute lecture by cute lady
@chamangupta4624
@chamangupta4624 2 жыл бұрын
637
@harshraj3344
@harshraj3344 Жыл бұрын
My man
@asawriter-f1v
@asawriter-f1v Жыл бұрын
I'm Indian and belongs to Bihar State 🇮🇳🇮🇳
@mango-strawberry
@mango-strawberry 7 ай бұрын
No one cares. Get lost.
99.9% IMPOSSIBLE
00:24
STORROR
Рет қаралды 31 МЛН
VIP ACCESS
00:47
Natan por Aí
Рет қаралды 30 МЛН
She made herself an ear of corn from his marmalade candies🌽🌽🌽
00:38
Valja & Maxim Family
Рет қаралды 18 МЛН
Nobel Minds 2024
52:30
Nobel Prize
Рет қаралды 768 М.
Lecture 1: Introduction to Superposition
1:16:07
MIT OpenCourseWare
Рет қаралды 8 МЛН
Markov Decision Processes - Computerphile
17:42
Computerphile
Рет қаралды 181 М.
But what is a neural network? | Deep learning chapter 1
18:40
3Blue1Brown
Рет қаралды 18 МЛН
Bayes theorem, the geometry of changing beliefs
15:11
3Blue1Brown
Рет қаралды 4,6 МЛН
What's the future for generative AI? - The Turing Lectures with Mike Wooldridge
1:00:59
99.9% IMPOSSIBLE
00:24
STORROR
Рет қаралды 31 МЛН