ะ ะตั าะฐัะฐะปะดั 12
In this video, we explore the critical process of ๐ ๐ผ๐ฑ๐ฒ๐น ๐๐ฒ๐๐ฒ๐น๐ผ๐ฝ๐บ๐ฒ๐ป๐ ๐ฎ๐ป๐ฑ ๐ข๐ณ๐ณ๐น๐ถ๐ป๐ฒ ๐๐๐ฎ๐น๐๐ฎ๐๐ถ๐ผ๐ป in machine learning. We break down how to develop and refine models to turn raw data into powerful predictions, ensuring they are reliable, accurate, and ready for deployment.
๐ฌ๐ผ๐โ๐น๐น ๐น๐ฒ๐ฎ๐ฟ๐ป:
โข The ๐ถ๐๐ฒ๐ฟ๐ฎ๐๐ถ๐๐ฒ ๐ฝ๐ฟ๐ผ๐ฐ๐ฒ๐๐ of model development and why it's essential for continual improvement.
โข How to ๐๐ฒ๐น๐ฒ๐ฐ๐ ๐๐ต๐ฒ ๐ฟ๐ถ๐ด๐ต๐ ๐บ๐ผ๐ฑ๐ฒ๐น based on factors like complexity, interpretability, and computational cost.
โข The importance of ๐บ๐ผ๐ฑ๐ฒ๐น ๐๐ฟ๐ฎ๐ถ๐ป๐ถ๐ป๐ด, tuning ๐ต๐๐ฝ๐ฒ๐ฟ๐ฝ๐ฎ๐ฟ๐ฎ๐บ๐ฒ๐๐ฒ๐ฟ๐, and leveraging ๐ฝ๐ฟ๐ฒ-๐๐ฟ๐ฎ๐ถ๐ป๐ฒ๐ฑ ๐บ๐ผ๐ฑ๐ฒ๐น๐.
โข How ๐ฒ๐ป๐๐ฒ๐บ๐ฏ๐น๐ฒ ๐น๐ฒ๐ฎ๐ฟ๐ป๐ถ๐ป๐ด can enhance model performance by combining multiple models.
โข Why ๐ฒ๐
๐ฝ๐ฒ๐ฟ๐ถ๐บ๐ฒ๐ป๐ ๐๐ฟ๐ฎ๐ฐ๐ธ๐ถ๐ป๐ด and ๐๐ฒ๐ฟ๐๐ถ๐ผ๐ป๐ถ๐ป๐ด are key to reproducibility and debugging.
โข Techniques like ๐ฑ๐ถ๐๐๐ฟ๐ถ๐ฏ๐๐๐ฒ๐ฑ ๐๐ฟ๐ฎ๐ถ๐ป๐ถ๐ป๐ด and AutoML that speed up the model development process.
โข The four ๐ฝ๐ต๐ฎ๐๐ฒ๐ ๐ผ๐ณ ๐ ๐ ๐ฎ๐ฑ๐ผ๐ฝ๐๐ถ๐ผ๐ป in an organization, from simple heuristics to automating the model deployment process.
โข How to conduct ๐ผ๐ณ๐ณ๐น๐ถ๐ป๐ฒ ๐ฒ๐๐ฎ๐น๐๐ฎ๐๐ถ๐ผ๐ป to test model performance before deployment, ensuring its robustness across different conditions.
We also discuss various evaluation methods such as ๐ฝ๐ฒ๐ฟ๐๐๐ฟ๐ฏ๐ฎ๐๐ถ๐ผ๐ป ๐๐ฒ๐๐๐, ๐ฐ๐ผ๐ป๐ณ๐ถ๐ฑ๐ฒ๐ป๐ฐ๐ฒ ๐บ๐ฒ๐ฎ๐๐๐ฟ๐ฒ๐บ๐ฒ๐ป๐, ๐ฐ๐ฎ๐น๐ถ๐ฏ๐ฟ๐ฎ๐๐ถ๐ผ๐ป, ๐ฎ๐ป๐ฑ ๐๐น๐ถ๐ฐ๐ฒ-๐ฏ๐ฎ๐๐ฒ๐ฑ ๐ฒ๐๐ฎ๐น๐๐ฎ๐๐ถ๐ผ๐ป, all of which ensure your model is reliable, accurate, and fair.
If youโre interested in learning how to build, refine, and evaluate machine learning models effectively, this video is for you!
Donโt forget to like, subscribe, and hit the bell icon for more in-depth content on machine learning and AI!