Mastering Model Development and Offline Evaluation in Machine Learning

  ะ ะตั‚ า›ะฐั€ะฐะปะดั‹ 12

flair

flair

ะšาฏะฝ ะฑาฑั€ั‹ะฝ

In this video, we explore the critical process of ๐— ๐—ผ๐—ฑ๐—ฒ๐—น ๐——๐—ฒ๐˜ƒ๐—ฒ๐—น๐—ผ๐—ฝ๐—บ๐—ฒ๐—ป๐˜ ๐—ฎ๐—ป๐—ฑ ๐—ข๐—ณ๐—ณ๐—น๐—ถ๐—ป๐—ฒ ๐—˜๐˜ƒ๐—ฎ๐—น๐˜‚๐—ฎ๐˜๐—ถ๐—ผ๐—ป in machine learning. We break down how to develop and refine models to turn raw data into powerful predictions, ensuring they are reliable, accurate, and ready for deployment.
๐—ฌ๐—ผ๐˜‚โ€™๐—น๐—น ๐—น๐—ฒ๐—ฎ๐—ฟ๐—ป:
โ€ข The ๐—ถ๐˜๐—ฒ๐—ฟ๐—ฎ๐˜๐—ถ๐˜ƒ๐—ฒ ๐—ฝ๐—ฟ๐—ผ๐—ฐ๐—ฒ๐˜€๐˜€ of model development and why it's essential for continual improvement.
โ€ข How to ๐˜€๐—ฒ๐—น๐—ฒ๐—ฐ๐˜ ๐˜๐—ต๐—ฒ ๐—ฟ๐—ถ๐—ด๐—ต๐˜ ๐—บ๐—ผ๐—ฑ๐—ฒ๐—น based on factors like complexity, interpretability, and computational cost.
โ€ข The importance of ๐—บ๐—ผ๐—ฑ๐—ฒ๐—น ๐˜๐—ฟ๐—ฎ๐—ถ๐—ป๐—ถ๐—ป๐—ด, tuning ๐—ต๐˜†๐—ฝ๐—ฒ๐—ฟ๐—ฝ๐—ฎ๐—ฟ๐—ฎ๐—บ๐—ฒ๐˜๐—ฒ๐—ฟ๐˜€, and leveraging ๐—ฝ๐—ฟ๐—ฒ-๐˜๐—ฟ๐—ฎ๐—ถ๐—ป๐—ฒ๐—ฑ ๐—บ๐—ผ๐—ฑ๐—ฒ๐—น๐˜€.
โ€ข How ๐—ฒ๐—ป๐˜€๐—ฒ๐—บ๐—ฏ๐—น๐—ฒ ๐—น๐—ฒ๐—ฎ๐—ฟ๐—ป๐—ถ๐—ป๐—ด can enhance model performance by combining multiple models.
โ€ข Why ๐—ฒ๐˜…๐—ฝ๐—ฒ๐—ฟ๐—ถ๐—บ๐—ฒ๐—ป๐˜ ๐˜๐—ฟ๐—ฎ๐—ฐ๐—ธ๐—ถ๐—ป๐—ด and ๐˜ƒ๐—ฒ๐—ฟ๐˜€๐—ถ๐—ผ๐—ป๐—ถ๐—ป๐—ด are key to reproducibility and debugging.
โ€ข Techniques like ๐—ฑ๐—ถ๐˜€๐˜๐—ฟ๐—ถ๐—ฏ๐˜‚๐˜๐—ฒ๐—ฑ ๐˜๐—ฟ๐—ฎ๐—ถ๐—ป๐—ถ๐—ป๐—ด and AutoML that speed up the model development process.
โ€ข The four ๐—ฝ๐—ต๐—ฎ๐˜€๐—ฒ๐˜€ ๐—ผ๐—ณ ๐— ๐—Ÿ ๐—ฎ๐—ฑ๐—ผ๐—ฝ๐˜๐—ถ๐—ผ๐—ป in an organization, from simple heuristics to automating the model deployment process.
โ€ข How to conduct ๐—ผ๐—ณ๐—ณ๐—น๐—ถ๐—ป๐—ฒ ๐—ฒ๐˜ƒ๐—ฎ๐—น๐˜‚๐—ฎ๐˜๐—ถ๐—ผ๐—ป to test model performance before deployment, ensuring its robustness across different conditions.
We also discuss various evaluation methods such as ๐—ฝ๐—ฒ๐—ฟ๐˜๐˜‚๐—ฟ๐—ฏ๐—ฎ๐˜๐—ถ๐—ผ๐—ป ๐˜๐—ฒ๐˜€๐˜๐˜€, ๐—ฐ๐—ผ๐—ป๐—ณ๐—ถ๐—ฑ๐—ฒ๐—ป๐—ฐ๐—ฒ ๐—บ๐—ฒ๐—ฎ๐˜€๐˜‚๐—ฟ๐—ฒ๐—บ๐—ฒ๐—ป๐˜, ๐—ฐ๐—ฎ๐—น๐—ถ๐—ฏ๐—ฟ๐—ฎ๐˜๐—ถ๐—ผ๐—ป, ๐—ฎ๐—ป๐—ฑ ๐˜€๐—น๐—ถ๐—ฐ๐—ฒ-๐—ฏ๐—ฎ๐˜€๐—ฒ๐—ฑ ๐—ฒ๐˜ƒ๐—ฎ๐—น๐˜‚๐—ฎ๐˜๐—ถ๐—ผ๐—ป, all of which ensure your model is reliable, accurate, and fair.
If youโ€™re interested in learning how to build, refine, and evaluate machine learning models effectively, this video is for you!
Donโ€™t forget to like, subscribe, and hit the bell icon for more in-depth content on machine learning and AI!

ะŸั–ะบั–ั€ะปะตั€
Mastering Training Data for ML: How to Build Better Models with Sampling, Labeling & Augmentation
5:26
Quilt Challenge, No Skills, Just Luck#Funnyfamily #Partygames #Funny
00:32
Family Games Media
ะ ะตั‚ า›ะฐั€ะฐะปะดั‹ 55 ะœะ›ะ
Chain Game Strong โ›“๏ธ
00:21
Anwar Jibawi
ะ ะตั‚ า›ะฐั€ะฐะปะดั‹ 41 ะœะ›ะ
Try this prank with your friends ๐Ÿ˜‚ @karina-kola
00:18
Andrey Grechka
ะ ะตั‚ า›ะฐั€ะฐะปะดั‹ 9 ะœะ›ะ
What is AWS CloudFormation ?
9:24
flair
ะ ะตั‚ า›ะฐั€ะฐะปะดั‹ 163
Apache Flink Architecture in 6 minutes !
6:21
flair
ะ ะตั‚ า›ะฐั€ะฐะปะดั‹ 2,2 ะœ.
What is Cloud native computing ?
3:49
flair
ะ ะตั‚ า›ะฐั€ะฐะปะดั‹ 111
3 Types & 3 Unseen Layers Of Karma: How The Law Of Cause and Effect Shapes Your Reality
16:39
Awakening Wisdom
ะ ะตั‚ า›ะฐั€ะฐะปะดั‹ 325
Jensen Huang Said Nvidia Will Hit $2000 | NVDA Stock Latest News
17:50
Lion Of Wall Street
ะ ะตั‚ า›ะฐั€ะฐะปะดั‹ 1,2 ะœ.
SCHD: Time to Dump or Double Down?
13:10
InvestEd
ะ ะตั‚ า›ะฐั€ะฐะปะดั‹ 40
Jensen Huang Said Palantir Will Hit $5000 | PLTR Stock Latest news
27:28
Lion Of Wall Street
ะ ะตั‚ า›ะฐั€ะฐะปะดั‹ 2,6 ะœ.
AWS CloudFormation Template [Anatomy]
6:04
flair
ะ ะตั‚ า›ะฐั€ะฐะปะดั‹ 173