(ML 18.3) Stationary distributions, Irreducibility, and Aperiodicity

  Рет қаралды 56,252

mathematicalmonk

mathematicalmonk

Күн бұрын

Пікірлер: 21
@kriti3011
@kriti3011 4 ай бұрын
Fantastic video, clarified things i cudnt find anywhere else
@joshuamhenrich
@joshuamhenrich 13 жыл бұрын
These are seriously great. A next step would be making a PDF or something with your basic definitions you define here. Keep up the great work.
@pelemanov
@pelemanov 13 жыл бұрын
For those who struggle with the same issue, check out video 18.6 starting at 06:25. Very clear intuition there and even explaining the name :-).
@LeilaRmaths
@LeilaRmaths 4 жыл бұрын
very valuable video.. Thank you so much
@martinsdundurs9497
@martinsdundurs9497 5 жыл бұрын
Explanation of aperiodicity was interesting. Instructor, however, didn't make the final jump of conclusion there. It's interesting how periodicity arises in the context of 11:01
@xxRAP13Rxx
@xxRAP13Rxx 3 жыл бұрын
For your definition of an ergodic markov chain at the beginning, is it necessary that the markov chain is time-homogenous? Can a markov chain have its transition matrix change after each step and still be ergodic?
@muxecoid
@muxecoid 12 жыл бұрын
I think if initially it is different than what it eventually settles into your MC is simply not time-homogenous.
@pelemanov
@pelemanov 13 жыл бұрын
I mean, I understand it mathematically of course, but I don't understand it intuitively. What does this mean, why is this a nice property, a requisite for MCMC? What does it mean intuitively to multiply this row with T?
@SuperGZK
@SuperGZK 12 жыл бұрын
In MCMC it is standard practice allow the MC to run for some number of steps until it stabilizes. The initial behavior depends on the choice of starting point and is not representative of the long term behavior.
@christosmichaelides1988
@christosmichaelides1988 5 жыл бұрын
Yes. There's typically a 'burn-in' period. This is a pre-determined amount of steps (e.g 2000) that we may choose to disregard completely. We are basically 'throwing away' some initial steps because we only care about the high probability region.
@nonindividual
@nonindividual 12 жыл бұрын
(A very minor point) Your example following the definition of _aperiodic_ is slightly incorrect: because if k \in R_a, then M_k \subset R_a. (So that if 2 \in R_a, then surely 4 \in R_a.)
@Jacob011
@Jacob011 7 жыл бұрын
It seems to me that the mechanics behind the PMF stationarity condition is finite dimensional analogue of the reproducing property in RKHS theory.
@mbpm3
@mbpm3 10 жыл бұрын
what are you writing on?
@Jacob011
@Jacob011 7 жыл бұрын
I strongly suspect he's using SmoothDraw with some graphics tablet, just like KhanAcademy.
@Paivren
@Paivren 6 жыл бұрын
what do the short terms 'pmf' or in one of the earlier videos 'pdf' mean?
@dancetime4me
@dancetime4me 6 жыл бұрын
Probability Mass Function (for discrete variables) and Probability Density Function (for continuous variables)
@pelemanov
@pelemanov 13 жыл бұрын
Nice video, but why not focus more on the name of the property? I find that understanding the name makes it easier to understand (and remember!) the property. It also reduces the notions of aperiodicity to a very simple concept. I don't really understand the concept of stationarity though...
@hahahaha4444
@hahahaha4444 9 жыл бұрын
If a mk other than m1 cotains ra then it is not aperiodic?
@hongyangli5811
@hongyangli5811 8 жыл бұрын
No, it is not aperiodic. In other words, it is periodic.
@AV1461
@AV1461 8 жыл бұрын
I think I understood the aperiodicity property ok, but I don't understand why that will be important. Maybe next videos will explain.
@mikewbma
@mikewbma 13 жыл бұрын
Good Job. Too bad the more deeply we head in to stochastic process. The less views you will have :(.
(ML 18.4) Examples of Markov chains with various properties (part 1)
12:46
(ML 18.2) Ergodic theorem for Markov chains
14:48
mathematicalmonk
Рет қаралды 79 М.
Counter-Strike 2 - Новый кс. Cтарый я
13:10
Marmok
Рет қаралды 2,8 МЛН
Markov Chain Stationary Distribution : Data Science Concepts
17:33
This Is the Calculus They Won't Teach You
30:17
A Well-Rested Dog
Рет қаралды 3,5 МЛН
Markov Chains Clearly Explained! Part - 1
9:24
Normalized Nerd
Рет қаралды 1,3 МЛН
these are the habits of the top 1% students, that you can do.
12:58
(ML 18.6) Detailed balance (a.k.a. Reversibility)
14:43
mathematicalmonk
Рет қаралды 33 М.
AI Is Making You An Illiterate Programmer
27:22
ThePrimeTime
Рет қаралды 263 М.
Markov chain ergodicity conditions
19:08
Patrick Maillé
Рет қаралды 11 М.
Probability Theory 24 | Markov Chains
12:17
The Bright Side of Mathematics
Рет қаралды 7 М.