What are Branch cuts,Branch Points and Riemann Surfaces(complex analysis part-10) by mathOgenius.

  Рет қаралды 27,840

mathOgenius

mathOgenius

Күн бұрын

Пікірлер
@shegeley
@shegeley 4 жыл бұрын
And this, ladies and gentlemen, one more topic when nor reading my professor's notes neither reading MIT tutorial helped me but the random smart Indian guy on KZbin did! Applause
@mathOgenius
@mathOgenius 4 жыл бұрын
One of the best Comments I ever got! Thank you these appreciations works like fuel , Really happy to Help!
@samayaparibartan883
@samayaparibartan883 3 жыл бұрын
Indeed
@pasindubandara8358
@pasindubandara8358 3 жыл бұрын
I even watched the lecture again. But still, I had to come here.
@zacharyalonzo6164
@zacharyalonzo6164 3 жыл бұрын
i guess Im randomly asking but does anyone know of a way to log back into an Instagram account..? I stupidly lost my login password. I would appreciate any tricks you can give me!
@mathOgenius
@mathOgenius 5 жыл бұрын
I hope the video helps! Please share!
@Explore_With_Sagar
@Explore_With_Sagar 4 жыл бұрын
It really helped. Please suggest a book to study these things.
@Srinivasan15331
@Srinivasan15331 5 жыл бұрын
Yes bro your videos are always helping us
@srishtiagrawal1217
@srishtiagrawal1217 4 жыл бұрын
Thank you so much i thought i would die learning reimann analysis but this video saved me its not the difficulty of topic its the ease of explanation
@mathOgenius
@mathOgenius 4 жыл бұрын
Glad it helped!! please share to support !
@standup4you
@standup4you 5 жыл бұрын
You are literally a genius
@mathOgenius
@mathOgenius 5 жыл бұрын
thanks .. ! please share to support!
@karankakkar3999
@karankakkar3999 5 жыл бұрын
Good, clear and concise explanation. Well done.
@mathOgenius
@mathOgenius 5 жыл бұрын
thank you ! please share the video to support this channel .
@dixitkumar9050
@dixitkumar9050 4 жыл бұрын
You damn genius in maths..... thanks for such difficult topic explained in layman's terms
@mathOgenius
@mathOgenius 4 жыл бұрын
Thanks for appreciating! Please share the video to support my channel :)
@larsybarz
@larsybarz 4 жыл бұрын
Brilliant. Thanks a million times
@mathOgenius
@mathOgenius 4 жыл бұрын
your welcome!! please share to support:)
@lemyul
@lemyul 4 жыл бұрын
thanks self proclaimed genius /s
@mathOgenius
@mathOgenius 4 жыл бұрын
🤣🤣 no no.. this is just the channels name :)
@alikiaee1307
@alikiaee1307 Жыл бұрын
Thank you for the video. I think there might be a small mistake at 11:03. In the case of two poles at +/-i. if we consider the argument range of the whole (Z^2+1) to be 0 - 2pi then, as you mentioned, the portion of the imag axis between the poles is included in the branch line. because on the line Z^2+1 becomes a positive real number. for the same reason, the entire real axis also becomes a branch line. you can check that by plotting the real value of the function in Matlab which shows a clear discontinuity at the real axis (make sure you restrict the argument to 0-2*pi). is there a point I am missing?
@Ricky-Noll
@Ricky-Noll 5 жыл бұрын
super helpful thank you
@mathOgenius
@mathOgenius 5 жыл бұрын
happy to help !, please shate the playlist to support
@sayanjitb
@sayanjitb 4 жыл бұрын
in the first example, if I take a rotation (theta + Pi) around the origin , then also its value changing by the factor "i".Please explain it.
@mathOgenius
@mathOgenius 4 жыл бұрын
Yes .. you are right we are getting a differnet value but .. it's a different point on the graph and we can get differnet values there.. but the problem is the different value at same point..
@sayanjitb
@sayanjitb 4 жыл бұрын
​@@mathOgenius Thanks a lot!
@Explore_With_Sagar
@Explore_With_Sagar 4 жыл бұрын
Thank you so much bro. Can you suggest me a book to study these things in details ?
@mathOgenius
@mathOgenius 4 жыл бұрын
I studied complex analysis In the book schaum's outlines complex analysis,and mathematical methods of physics by arfken.
@riseldakodra4958
@riseldakodra4958 5 жыл бұрын
how do you understand that the value of the function changes when you make a rotation? how do you prove it changes? especially when the branch point isnt the origin?
@mathOgenius
@mathOgenius 5 жыл бұрын
the center changes like If there is z then center is 0 and if like z-a then center is a
@riseldakodra4958
@riseldakodra4958 5 жыл бұрын
@@mathOgenius yes, i understand this part but i dont understand how to prove that the value of the function will change during the rotation ...how to prove that the value will pass to the next riemann surface
@mathOgenius
@mathOgenius 5 жыл бұрын
put that in the function .. the period and the value will change
@khushbu5787
@khushbu5787 4 жыл бұрын
Why we use branches in logarithmic functions ? Is it may be applicable in real number system?
@mathOgenius
@mathOgenius 4 жыл бұрын
no branches are only useful in complex analysis
@studentscorner4802
@studentscorner4802 3 жыл бұрын
I was looking for the question u left exercise for us
@mathOgenius
@mathOgenius 3 жыл бұрын
its in schaums outlines complex analysis
@samayaparibartan883
@samayaparibartan883 3 жыл бұрын
One question - If by making a branch cut, say we are introducing 2 branches w1 & w2. So if we start with a value z belonging to w1, we can never change over to w2. Then how do we go to w2?
@mathOgenius
@mathOgenius 3 жыл бұрын
no the branches are already there , we are introducing a branch cut to restrict ourself in one branch.
@anikdas1760
@anikdas1760 3 жыл бұрын
Thanks
@JMaChrisGCarters
@JMaChrisGCarters 4 жыл бұрын
“Functions are not analytic at the branch cut”- why?
@mathOgenius
@mathOgenius 4 жыл бұрын
Because after the rotation .. the function changes its value .. that means encounter a jump ..shows discontinuity. hence not analytic
@JMaChrisGCarters
@JMaChrisGCarters 4 жыл бұрын
Duh okay I’m stupid. So if I choose a different branch cut my function will be analytic at the real line ?
@mathOgenius
@mathOgenius 4 жыл бұрын
yes .. of course it will be .. branch cuts are arbitrary..we just take them on x axis for like it's easy to work with that .(and you are not stupid ..nobody is .. everybody is a genius!) :)
@peterpoli2839
@peterpoli2839 3 жыл бұрын
No no no, sqrt(x) isn’t multivalued
@amritas2400
@amritas2400 Жыл бұрын
It is. Even in real analysis, sqrt(x) is multivalued. For example, we say that √4 is + or - 2. Because both the square of both positive and negative 2 gives 4. The solution of x^(1/n) has n solutions.
@bkaanlevent
@bkaanlevent 6 ай бұрын
iota=i, to the person who does not know what "iota" means
За кого болели?😂
00:18
МЯТНАЯ ФАНТА
Рет қаралды 2,6 МЛН
What are...Riemann surfaces?
13:12
VisualMath
Рет қаралды 9 М.
What are complex numbers? | Essence of complex analysis #2
32:11
Mathemaniac
Рет қаралды 233 М.
Complex Analysis L04: The Complex Logarithm, Log(z)
28:01
Steve Brunton
Рет қаралды 43 М.
Imaginary Numbers Are Real [Part 13: Riemann Surfaces]
13:49
Welch Labs
Рет қаралды 1,1 МЛН
Visualizing Complex-Valued Functions
23:38
Lemmaxiom
Рет қаралды 28 М.
complex analysis: polar forms and how branch cuts work
13:53
Maths 505
Рет қаралды 4,1 М.
Complex Logarithm, Branch Points, and Branch Cuts
37:50
DoctorPeregrinus
Рет қаралды 3,4 М.
What does a complex function look like? #SoME3
20:38
mathematimpa
Рет қаралды 124 М.
MM87: contour integrals-branch points and branch cuts
21:39
Learn Physics with Dr. Viv!
Рет қаралды 7 М.