And this, ladies and gentlemen, one more topic when nor reading my professor's notes neither reading MIT tutorial helped me but the random smart Indian guy on KZbin did! Applause
@mathOgenius4 жыл бұрын
One of the best Comments I ever got! Thank you these appreciations works like fuel , Really happy to Help!
@samayaparibartan8833 жыл бұрын
Indeed
@pasindubandara83583 жыл бұрын
I even watched the lecture again. But still, I had to come here.
@zacharyalonzo61643 жыл бұрын
i guess Im randomly asking but does anyone know of a way to log back into an Instagram account..? I stupidly lost my login password. I would appreciate any tricks you can give me!
@mathOgenius5 жыл бұрын
I hope the video helps! Please share!
@Explore_With_Sagar4 жыл бұрын
It really helped. Please suggest a book to study these things.
@Srinivasan153315 жыл бұрын
Yes bro your videos are always helping us
@srishtiagrawal12174 жыл бұрын
Thank you so much i thought i would die learning reimann analysis but this video saved me its not the difficulty of topic its the ease of explanation
@mathOgenius4 жыл бұрын
Glad it helped!! please share to support !
@standup4you5 жыл бұрын
You are literally a genius
@mathOgenius5 жыл бұрын
thanks .. ! please share to support!
@karankakkar39995 жыл бұрын
Good, clear and concise explanation. Well done.
@mathOgenius5 жыл бұрын
thank you ! please share the video to support this channel .
@dixitkumar90504 жыл бұрын
You damn genius in maths..... thanks for such difficult topic explained in layman's terms
@mathOgenius4 жыл бұрын
Thanks for appreciating! Please share the video to support my channel :)
@larsybarz4 жыл бұрын
Brilliant. Thanks a million times
@mathOgenius4 жыл бұрын
your welcome!! please share to support:)
@lemyul4 жыл бұрын
thanks self proclaimed genius /s
@mathOgenius4 жыл бұрын
🤣🤣 no no.. this is just the channels name :)
@alikiaee1307 Жыл бұрын
Thank you for the video. I think there might be a small mistake at 11:03. In the case of two poles at +/-i. if we consider the argument range of the whole (Z^2+1) to be 0 - 2pi then, as you mentioned, the portion of the imag axis between the poles is included in the branch line. because on the line Z^2+1 becomes a positive real number. for the same reason, the entire real axis also becomes a branch line. you can check that by plotting the real value of the function in Matlab which shows a clear discontinuity at the real axis (make sure you restrict the argument to 0-2*pi). is there a point I am missing?
@Ricky-Noll5 жыл бұрын
super helpful thank you
@mathOgenius5 жыл бұрын
happy to help !, please shate the playlist to support
@sayanjitb4 жыл бұрын
in the first example, if I take a rotation (theta + Pi) around the origin , then also its value changing by the factor "i".Please explain it.
@mathOgenius4 жыл бұрын
Yes .. you are right we are getting a differnet value but .. it's a different point on the graph and we can get differnet values there.. but the problem is the different value at same point..
@sayanjitb4 жыл бұрын
@@mathOgenius Thanks a lot!
@Explore_With_Sagar4 жыл бұрын
Thank you so much bro. Can you suggest me a book to study these things in details ?
@mathOgenius4 жыл бұрын
I studied complex analysis In the book schaum's outlines complex analysis,and mathematical methods of physics by arfken.
@riseldakodra49585 жыл бұрын
how do you understand that the value of the function changes when you make a rotation? how do you prove it changes? especially when the branch point isnt the origin?
@mathOgenius5 жыл бұрын
the center changes like If there is z then center is 0 and if like z-a then center is a
@riseldakodra49585 жыл бұрын
@@mathOgenius yes, i understand this part but i dont understand how to prove that the value of the function will change during the rotation ...how to prove that the value will pass to the next riemann surface
@mathOgenius5 жыл бұрын
put that in the function .. the period and the value will change
@khushbu57874 жыл бұрын
Why we use branches in logarithmic functions ? Is it may be applicable in real number system?
@mathOgenius4 жыл бұрын
no branches are only useful in complex analysis
@studentscorner48023 жыл бұрын
I was looking for the question u left exercise for us
@mathOgenius3 жыл бұрын
its in schaums outlines complex analysis
@samayaparibartan8833 жыл бұрын
One question - If by making a branch cut, say we are introducing 2 branches w1 & w2. So if we start with a value z belonging to w1, we can never change over to w2. Then how do we go to w2?
@mathOgenius3 жыл бұрын
no the branches are already there , we are introducing a branch cut to restrict ourself in one branch.
@anikdas17603 жыл бұрын
Thanks
@JMaChrisGCarters4 жыл бұрын
“Functions are not analytic at the branch cut”- why?
@mathOgenius4 жыл бұрын
Because after the rotation .. the function changes its value .. that means encounter a jump ..shows discontinuity. hence not analytic
@JMaChrisGCarters4 жыл бұрын
Duh okay I’m stupid. So if I choose a different branch cut my function will be analytic at the real line ?
@mathOgenius4 жыл бұрын
yes .. of course it will be .. branch cuts are arbitrary..we just take them on x axis for like it's easy to work with that .(and you are not stupid ..nobody is .. everybody is a genius!) :)
@peterpoli28393 жыл бұрын
No no no, sqrt(x) isn’t multivalued
@amritas2400 Жыл бұрын
It is. Even in real analysis, sqrt(x) is multivalued. For example, we say that √4 is + or - 2. Because both the square of both positive and negative 2 gives 4. The solution of x^(1/n) has n solutions.
@bkaanlevent6 ай бұрын
iota=i, to the person who does not know what "iota" means