A beautiful infinite series result

  Рет қаралды 3,720

Maths 505

Maths 505

Күн бұрын

Пікірлер: 18
@xleph2525
@xleph2525 4 күн бұрын
The final result can be further simplified using the reflection formula for digamma: Final result: 1/x - pi*cot(x*pi)
@spinothenoooob6050
@spinothenoooob6050 2 күн бұрын
Gamma function is far better than cotx
@Gqtor
@Gqtor 4 күн бұрын
The answer should instead be (digamma(1+x)-digamma(1-x))/2 as differentiating the power series yields a factor of 2 as noted in 7:35. Neat derivation!
@CM63_France
@CM63_France 3 күн бұрын
Hi, "ok, cool" : 0:20 , 1:14 , "terribly sorry about that" : 3:20 , 6:25 , 6:27 , 8:26 .
@mrityunjaykumar4202
@mrityunjaykumar4202 4 күн бұрын
@6:11 it should be 4^k or 2^2k in the denominator since x^2k at x=1/2
@kappasphere
@kappasphere 4 күн бұрын
This is crazy, I didn't expect the initial solution to be this easy, not to mention all the identities that came of it
@Mephisto707
@Mephisto707 4 күн бұрын
I remember when I first read the wikipedia entries for the zeta, gamma and digamma functions. Those pages showed all sorts of identities correlating those 3 functions, including several series expansions. At the time I was like, how on earth can all of these identities be found? Your channel is answering that question for me and I thank you for that.
@xleph2525
@xleph2525 4 күн бұрын
This approximate train of thought is where the rather famous result: sum_{1}^{infinity}{(zeta(2n)-1)/n} = ln(2) comes from! Unfortunately I have never seen any series that use zeta(2n+1). Perhaps you have seen some, though?
@alipourzand6499
@alipourzand6499 4 күн бұрын
Best place to discover new functions !
@MrWael1970
@MrWael1970 4 күн бұрын
For the minute 3:32, the (1-(pi^2*x^2)/(pi^2/x^2)) this leads to 1-(x^2*k^2). I notice that the solution shall be modified. Overall, thank you for this innovative problem.
@balpedro3602
@balpedro3602 4 күн бұрын
Nice, but I want to point out that for the natural even values of the zeta function the is a classic formula involving powers of pi and the Bernouilli numbers (this formula generalizes the Euler's solution of Basel's problem, btw). The fomula reads \zeta(2n)=(-1)^n(1/2)(2\pi)^{2n}B_{2n}(1/(2n)!). This along with your calculation provides a generating formula for either even values of the zeta function or, equivalently, even values of the Bernoilli numbers (btw, all odd values of the Bernouilli numbers, with the exception of the first, which is 1/2, are zero).
@leroyzack265
@leroyzack265 4 күн бұрын
Are these Kamal special functions?
@anonymous_0416
@anonymous_0416 4 күн бұрын
Biology & Chemistry lover spotted 😂
@philipp3761
@philipp3761 3 күн бұрын
Do you have a video about a integral of x^2*sech(x)^t ? I'm curious
@thewarlord8904
@thewarlord8904 3 күн бұрын
Well we could have done this by using sinx/x expansion and taking log on both sides but still brilliant
@lukesaul2919
@lukesaul2919 3 күн бұрын
sum k=1 to 10 🔥
@rishabhshah8754
@rishabhshah8754 4 күн бұрын
hii, could you please try this integral, I(α) = \int_0^1 (x^{50}(α-x)^{50}) dx i had this in an exam recently, i tried to use feynman 50 times. i made a mistake but i still got the correct answer 😅
@giuseppemalaguti435
@giuseppemalaguti435 4 күн бұрын
Utilizzando la definizione di ξ,e scambiando i simboli di Σ,risulta S=-Σln(1-(x/n)^2)..n=1,2,3...a questo punto....boh...
SUPREME GOLDEN INFINITE SERIES!
13:45
Maths 505
Рет қаралды 4,7 М.
An exponentially fascinating integral
9:23
Maths 505
Рет қаралды 440
Support each other🤝
00:31
ISSEI / いっせい
Рет қаралды 81 МЛН
99.9% IMPOSSIBLE
00:24
STORROR
Рет қаралды 31 МЛН
Мясо вегана? 🧐 @Whatthefshow
01:01
История одного вокалиста
Рет қаралды 7 МЛН
Albgauturnier Herren C Schneider / Eberhardt - Oppermann / Paul
7:09
two ways, one sum
14:03
Michael Penn
Рет қаралды 9 М.
A beautiful trigonometric integral
14:08
Maths 505
Рет қаралды 6 М.
The soundness and completeness of logic
14:31
All Angles
Рет қаралды 17 М.
7 Outside The Box Puzzles
12:16
MindYourDecisions
Рет қаралды 150 М.
This open problem taught me what topology is
27:26
3Blue1Brown
Рет қаралды 944 М.
Researchers thought this was a bug (Borwein integrals)
17:26
3Blue1Brown
Рет қаралды 3,9 МЛН
Understanding Measure Theory and the Lebesgue Integral
16:51
The secret behind constants
18:04
MAKiT
Рет қаралды 52 М.
Support each other🤝
00:31
ISSEI / いっせい
Рет қаралды 81 МЛН