The differential equation y' ' =c* y^ p , together with boundary conditions y '[0]= 0 , y[xo] = 1 plays a role e.g. in chemical engineering . Here p can be any real number. In particular , for 0 < p
@pandavroomvroom10 ай бұрын
math 505 with 50.5k subs
@o0QuAdSh0t0o10 ай бұрын
🤤🤤
@Dravignor10 ай бұрын
Lezgooooooooo
@JeeAspirant2024-j7f10 ай бұрын
50.6 now 😢
@humhum398710 ай бұрын
Road to 505k subs
@edmundwoolliams124010 ай бұрын
If this were a university lecture, the N=0 and N=1 cases would be explained painstakingly thoroughly for 45 minutes and explained how useful the applications are. Then the N>1 case would be haphazardly scribbled a little bit then left as an exercise
@maths_50510 ай бұрын
😂😂😂
@maths_50510 ай бұрын
Well I guess that's why we love KZbin math😂
@edmundwoolliams124010 ай бұрын
@@maths_505 Exactly ;P
@tomaszkochaniec942110 ай бұрын
More difficult is y^n=n-th derivative with y eg. y^n=y^(n)...
@coreyyanofsky10 ай бұрын
interesting to contemplate substituting N = 0 or 1 into the general solution N = 0 recovers that specific case directly N = 1 requires taking a limit
@maths_50510 ай бұрын
Exactly the reason I wanted to start with them separately as sort of a buildup towards the general solution.
@MrWael19704 ай бұрын
Nice idea. Thanks
@Calcprof10 ай бұрын
n=2 can be expressed in terms of the Wierstrass Pe function. The y'' == (y')^n version is easier, at least to get some solutions.
@maths_50510 ай бұрын
Yes indeed
@merwan.houiralami9 ай бұрын
it’s so unsatisfying to be left with such solutions and not clear regular ones, and this for so many equations !!!
@michaelbaum679610 ай бұрын
Cool solution👍
@edmundwoolliams124010 ай бұрын
Omg I've been waiting so long for someone to do this!
@euler110 ай бұрын
I don't understand what you did @ 2:13, how could you change the second derivative of y to (y'/2)^2 ?
@aravindakannank.s.10 ай бұрын
im lucky to explain it to the great Euler the thing is he reverse engineered differential by integrating it to achieve it 😊with respective to the x on both sides
@juliavixen17610 ай бұрын
It's the integral (the antiderivative) of y'y'' which then has the derivative operation written separately in front of it. So when you do (or redo) the derivative of the antiderivative you get back your original y'y'' In Leibnitz notation, (dy/dx)(d²y/dx²) when integrated for (dx) gives you ( (1/2)(dy/dx) )² and if you then later apply a (d/dx) to that, you get (dy/dx)(d²y/dx²) back... I think. (Disclaimer: I might be wrong. I'm not confident in my ability to solve differential equations right now.)
@aravindakannank.s.10 ай бұрын
@@juliavixen176 u r just right keep ur confidence up😊
@bowlteajuicesandlemon10 ай бұрын
Using u-subs, if you have y'*y", then you can take y' as u, using the concept integral(f(g(x)g'(x)) = integral(f(u)) w.r.t. u, F(u). So you end up with integral(u) = u²/2 = (y)²/2
@marcellobernardini84129 ай бұрын
It would be intresting a video where you analize also N
@hortlegende10 ай бұрын
Why can you simplify (+-x)^2/1-n as (x^2)^1/1-n? For n=3 you have +-x^-1 and absolute value of x ^-1, maybe (probably) forgetting something (7:00)
@aravindakannank.s.10 ай бұрын
either it's positive real number or negative real number by squaring it we will positive squared number of real number same goes with algebra😊
@stophel_en_blick761210 ай бұрын
can you split the fraction in the exponent like in the last part ? because for instance we have cases like (-1)^{2/6} = (-1)^{1/3} = -1 eq 1 = 1^{1/3} = ((-1)^2)^{1/3}.
@YasKashije10 ай бұрын
I did my homework
@asianglower10 ай бұрын
love the videos!!
@Mission-IIT2510 ай бұрын
50.5k subscriber xD anyways which app do u use to write these notes?
@satyam-isical10 ай бұрын
Cool but warm😀
@GeraldPreston19 ай бұрын
just cancel out the y on both sides and you get " = N
@maths_5059 ай бұрын
Makes sense
@Unidentifying10 ай бұрын
quick maffs
@maddog559710 ай бұрын
Yeah, well keep A non-zero and see what happens. Things don’t work out so nice anymore…
@lovishnahar180710 ай бұрын
plz rescue me from probability of combinatorics
@maths_50510 ай бұрын
Yar I don't normally do combinatorics.....I'm an advanced calculus and physics guy.