A wild quintic trigonometric integral

  Рет қаралды 7,061

Maths 505

Maths 505

Күн бұрын

Пікірлер: 16
@manstuckinabox3679
@manstuckinabox3679 Жыл бұрын
- So, our methods are pretty much the same, but I used a generalized form of the Mellin transform of 1/1+x^b (proved using contour integration, review Gamelin's exercise on it) at 1 and at 3 to get 2*(pi/5sin(pi/5) + pi/5sin(3*pi/5)) ... - hey, I thought of beta too! it's amazing how contour integration and beta function are so similar when it comes to solutions, I think Churchill had a nice exercise exploring the beta function in light of complex analysis. Man, I'm loving the content my man! keep it up! and don't fear experimenting with the content as well!
@MatthisDayer
@MatthisDayer Жыл бұрын
i see 5, so the answer must be something with golden ratio
@vascomanteigas9433
@vascomanteigas9433 Жыл бұрын
Using the substitution x = arctan(t), which turns the integral domain to the entire positive real axis, and simplifying the rational function gets: (t^2+1)/(t^4-t^3+t^2-t+1) Which is an even function. Applying the residue Theorem solves the problem, but all four poles (only two are enclosed by the contour) are irrational.
@jieyuenlee1758
@jieyuenlee1758 9 ай бұрын
11:32 asumme y is the golden ratio Sqrt5=2y-1 ysqrt5=2y²-y ysqrt5=2y+2-y ysqrt5=y+2 the denominator can be simplyfy to 5sqrt(y+2) where y is the golden ratio.
@orionspur
@orionspur Жыл бұрын
Interesting. I probably would have tried factoring the denominator, and simplifying.
@MrWael1970
@MrWael1970 Жыл бұрын
Very interesting integral, and very smart solution plan. Thank you.
@TheArtOfBeingANerd
@TheArtOfBeingANerd Жыл бұрын
*radical sign and five* Coorporate needs you to find the difference between these two images. Maths 505: they're the same picture
@giuseppemalaguti435
@giuseppemalaguti435 Жыл бұрын
I=(π/√5)(1/√(5-2√5)+1/√(5+2√5))+(2/√5√(5-2√5))arctg1/(√5-2√5)-2/(√5√(5+2√5))artg(1/√(5+2√5))=3,46...
@jwkim4428
@jwkim4428 Ай бұрын
How about this form, (2pi/5 sec pi/10)*phi^2 😅
@The_Shrike
@The_Shrike Жыл бұрын
Just got your gamma function hoodie, will be wearing it to school on Monday
@maths_505
@maths_505 Жыл бұрын
WOAH 🔥
@jurgensand9201
@jurgensand9201 Жыл бұрын
The golden ratio satisfies fi*fi = 1-fi and not fi*fi = 1+fi. With this, the result is slightly different but similarily compact 😊
@Marvels18
@Marvels18 Жыл бұрын
Nicee
@Haxislive766
@Haxislive766 Жыл бұрын
Just not hold on ß function yet still the same procedure I apply earlier
@Marvels18
@Marvels18 Жыл бұрын
Nicee
Is this integral too complex for Feynman's technique???
15:34
An incredible integral solved using Feynman's trick
15:46
Maths 505
Рет қаралды 9 М.
From Small To Giant 0%🍫 VS 100%🍫 #katebrush #shorts #gummy
00:19
How to Fight a Gross Man 😡
00:19
Alan Chikin Chow
Рет қаралды 16 МЛН
A nice integral from 1886
16:01
Maths 505
Рет қаралды 17 М.
Sum from 1 to infinity of 1/(k^2+1)
7:16
mathemagical
Рет қаралды 4,5 М.
Thank you for this wonderful integral
13:45
Maths 505
Рет қаралды 9 М.
Complex integrals are ... different.
14:12
Michael Penn
Рет қаралды 52 М.
ONE BALLER INTEGRAL: int(0, π/4) ln(1-tan(θ))/tan(θ)
12:56
Solving the Gaussian Integral the cool way
9:39
Dr. Trefor Bazett
Рет қаралды 45 М.
a crazy integral - floor function - limit problem
10:17
Maths 505
Рет қаралды 7 М.
A beautiful iterated integral
17:14
Maths 505
Рет қаралды 11 М.