A ridiculously awesome integral with an epic result

  Рет қаралды 12,075

Maths 505

Maths 505

Күн бұрын

Пікірлер: 38
@rajendramisir3530
@rajendramisir3530 2 жыл бұрын
A reliable heterogeneous mixture that leads to a succulent solution of this esoteric integral. Clever choice of tools, techniques and clear explanation. Thanks for sharing. Recognizing and applying identities is a very helpful technique to solve problems in Mathematics.
@maths_505
@maths_505 2 жыл бұрын
Spoken like a poet
@fartoxedm5638
@fartoxedm5638 2 жыл бұрын
I just discovered your channel yesterday, but I'm already in love! You remind me of my teacher, who always left out some details, but he always mentioned them to make sure that we also understand all the basic things.
@michaelbaum6796
@michaelbaum6796 2 жыл бұрын
You are really the best teacher I have ever had. Your videos are so clear. I live them.
@violintegral
@violintegral 2 жыл бұрын
AMAZING integral. We get the trifecta of famous mathematical constants: e, pi and phi all in relation with one another through this integral. I found another great solution using the series expansion of cosine, the Gamma and Beta function, and the geometric series but I don't want to step on your toes by sharing too many of my own solutions. It's your channel, after all.
@maths_505
@maths_505 2 жыл бұрын
I found that solution too but this technique is way more awesome. After all, the only way to make integrals even more entertaining is to throw complex numbers, integral transforms and special functions into the mix😂
@rajendramisir3530
@rajendramisir3530 2 жыл бұрын
13:32 A reliable heterogeneous mixture that leads to a succulent solution of this esoteric integral. Clever choice of tools, techniques and explanation. Thanks for sharing. Recognizing and applying identities is a very useful technique to help construct solutions to problems in Mathematics.
@tueur2squall973
@tueur2squall973 2 жыл бұрын
May I ask you how did you achieve the same results by using at first the geometric series of cosine ? I'm trying my best but I'm stuck. Here's my work for the moment : Step 1: transform the integral from -infty to+infty into 2*integral from 0 to +infinity because our integrand is even. Step 2: Write cos(2x²) as its geometric series Step 3: slip the exponential term inside the sum and switch up the sum and the integral Step 4 : small change of variable to get the gamma function. We let t=x² Step 5 : We have finally the sum over k of [(-4)^k]Gamma(2k+1/2)/(2k)! Then what do we do next ?
@violintegral
@violintegral 2 жыл бұрын
@@tueur2squall973 multiply by Gamma(1/2)/Gamma(1/2). Then the summand is 1/sqrt(pi)*(-4)^n*Gamma((4n+1)/2)*Gamma(1/2)/Gamma(2n+1). The Gamma function expression is of the form Gamma(x)*Gamma(y)/Gamma(x+y) = B(x, y), so you can use an integral representation of the Beta function to transform the sum into an integral. By the way, the resulting geometric series has common ratio (-4x^2), and since the integral bounds are from 0 to 1, it does not converge in the usual sense. Now I don't know anything about complex analysis, but I believe it's valid to analytically continue the geometric series here so that we can write the sum as 1/(4x^2 + 1). And, indeed, this approach seems to be valid since the resulting integral gives the same value found in this video. However, evaluating the resulting integral is not an easy task either, so good luck!
@TheArtOfBeingANerd
@TheArtOfBeingANerd Жыл бұрын
I love how the radical radical 5 at around 9:45 looks like it's just morphing
@omar990anbar
@omar990anbar 2 жыл бұрын
It was a good plot twist at the very end. Golden Ratio: have you forgotten me boys?
@qetzing
@qetzing 2 жыл бұрын
I am simply amazed. I don't have the words to express how elegant the solution and even more so your presentation is. Truly perfect
@maths_505
@maths_505 2 жыл бұрын
Thanks mate
@michaelbaum6796
@michaelbaum6796 2 жыл бұрын
Fascinating solution👍It‘s so much fun watching your perfect videos. Go ahead!😀
@maths_505
@maths_505 2 жыл бұрын
Thanks bro
@maalikserebryakov
@maalikserebryakov Жыл бұрын
Its always a spiritual experience seeing your solutions. I feel my soul being thrown out of my body and through the cosmos. I see everything for a few seconds.
@maths_505
@maths_505 Жыл бұрын
Bro🥺
@renesperb
@renesperb 2 жыл бұрын
It seems worthwhile to show that for arbtrary complex a with positive realpart one has ∫ exp[-a*x^2] dx from 0 to inf = 1/2*√(π/a).This includes a number of special cases , like the one discussed in this video.
@tsa_gamer007
@tsa_gamer007 Жыл бұрын
does anyone knows that that in I(a)= the integral from 0 to infinity of e^(-a(x^2)) dx put ax^2=t => I(a)=1/(2sqrt of a) * gamma function of (1/2) so for a=1-2i we get our integral= Re(sqrt[pi/1-2i]) making the denominator real we get sqrt(pi/5) Re(sqrt(1+2i)) =sqrt(pi/5) sqrt golden ratio
@newwaveinfantry8362
@newwaveinfantry8362 2 жыл бұрын
Love it! ♥
@AhmadAli-fx1hk
@AhmadAli-fx1hk 2 жыл бұрын
The end result was pretty amazing
@erggish
@erggish Жыл бұрын
I have no idea how you got the results from the Laplace (and inverse) operators... But the end result of pi, phi and five was great indeed :D
@manstuckinabox3679
@manstuckinabox3679 2 жыл бұрын
Involving my favorite Identity?? SWEET!
@chenwong1036
@chenwong1036 Жыл бұрын
Where do these integral come from and how are these used in real life applications?
@manstuckinabox3679
@manstuckinabox3679 Жыл бұрын
Reviewing this, 2:36, just as I was about to ask LOL.
@fonaimartin98
@fonaimartin98 2 жыл бұрын
Subbing u = x sqrt(1 - 2j) into the integral (of which's real part we are interested in) also works, doesn't it? (Assuming we take the value of the Gaussian integral as known)
@maths_505
@maths_505 2 жыл бұрын
I wanted the proof of the gaussian integral for a complex argument to be part of the video as kind of an added bonus as I found the evaluation quite beautiful
@carlosdavid7430
@carlosdavid7430 2 жыл бұрын
I got an 8 on my spanish exam,can you give me some integrals i can solve to cheer me up?
@maths_505
@maths_505 2 жыл бұрын
Let me think of some to post as HW Sorry about the Spanish exam mate....you'll get em next time
@rajibdebnath9896
@rajibdebnath9896 2 жыл бұрын
Hello sir, can you suggest me good mathematical physics book.
@maths_505
@maths_505 2 жыл бұрын
Oh there are lots of great books... For introductory concepts I recommended Stone and Golbert or Sadri Hassani's mathematical physics. For specific topics you can check out Sean Carroll's lecture notes in general relativity and there are plenty of resources for mathematics required for quantum mechanics: my favourite QM book by Lifshitz and Landau is full of wonderful mathematical explanations
@rajibdebnath9896
@rajibdebnath9896 2 жыл бұрын
@@maths_505 thank you sir.
@giuseppemalaguti435
@giuseppemalaguti435 2 жыл бұрын
Quando sei arrivato a 2 30 basta utilizzare l'integrale della gaussiana...ma immagino te ne sarai accorto
@maths_505
@maths_505 2 жыл бұрын
Sì, certo, ma volevo includere la valutazione della gaussiana per un argomento complesso come parte dello sviluppo della soluzione per l'integrale perché era estremamente interessante
@holyshit922
@holyshit922 Жыл бұрын
Laplace transform yes it is good idea but Euler's formula can be avoided , nevertheless nice solution
An awesome generalized integral!
8:23
Maths 505
Рет қаралды 9 М.
A RIDICULOUSLY AWESOME FRACTIONAL TRIGONOMETRIC INTEGRAL!!!
15:53
My scorpion was taken away from me 😢
00:55
TyphoonFast 5
Рет қаралды 2,7 МЛН
How Strong Is Tape?
00:24
Stokes Twins
Рет қаралды 96 МЛН
She made herself an ear of corn from his marmalade candies🌽🌽🌽
00:38
Valja & Maxim Family
Рет қаралды 18 МЛН
This epic integral is the best thing you'll see today!
25:35
Maths 505
Рет қаралды 12 М.
The Laplace Transform: A Generalized Fourier Transform
16:28
Steve Brunton
Рет қаралды 315 М.
An easy proof of the Power Rule for differentiation!
4:43
The Maths XP Farm
Рет қаралды 556
Math professor solves famous integral while rock climbing!
4:47
Michael Penn
Рет қаралды 29 М.
how Laplace solved the Gaussian integral
15:01
blackpenredpen
Рет қаралды 767 М.
Solving ALL integrals from the 2025 MIT Integration Bee Finals
36:18
A surprisingly interesting integral
11:12
Maths 505
Рет қаралды 6 М.
My scorpion was taken away from me 😢
00:55
TyphoonFast 5
Рет қаралды 2,7 МЛН