MATLAB Session -- Steepest Ascent Method

  Рет қаралды 20,514

EMPossible

EMPossible

Күн бұрын

Пікірлер: 30
@josephtraverso5355
@josephtraverso5355 Жыл бұрын
Your idea to show the guess converging on the peak is brilliant!
@mazinalbulushi8142
@mazinalbulushi8142 Жыл бұрын
So when you're adding x1 and x2, when is the airplane taking off?
@empossible1577
@empossible1577 Жыл бұрын
I think you misunderstood. You have to calculate the geometric mean of x1 and x2 so that the partial derivative of inertia during take off is accounted for. You see, the relationship of the variables falls within a hyperbolic paraboloid where the hypotenuse cannot be identified. I hope this clears things up.
@LiMobileOfficial
@LiMobileOfficial 5 жыл бұрын
Firstly ; Thanks for video. I have a question what is the differance between surf(x,y,F') and surf(x,y,F) ?
@empossible1577
@empossible1577 5 жыл бұрын
MATLAB is an acronym meaning "MATrix LABoratory." Given this mission, MATLAB assumes everything is a matrix and matrix calculations are always assumed. The convention for access elements in matrices is A(row, column). In this framework, the first dimension of the array is vertical position and the second is horizontal position. For CEM, we must build a device onto an xy grid and we like to think of function as f(x,y) where the first argument is horizontal position and the second is vertical position. This is the exact opposite of what MATLAB does. There is no clear way through this that I have come up with. I have found that students struggle the most with building geometries into arrays. Since it is easier to think of arrays as A(x,y) instead of A(y,x), we treat them as if they were all A(x,y). That works fine until it is time to plot the array. The ' calculates a transpose and so it flips the data around so that it displays in the sense we have built our arrays.
@LiMobileOfficial
@LiMobileOfficial 5 жыл бұрын
@@empossible1577 Thanks you for explanation👍
@Alex-bc3li
@Alex-bc3li 6 жыл бұрын
great Video , can I use this if I have only one variable which x only ?
@empossible1577
@empossible1577 6 жыл бұрын
You can use it, but I would recommend using a method specifically tailored for single-variable optimization. These are covered under Topic 8 here: emlab.utep.edu/ee4386_5301_CompMethEE.htm
@devenmhadgut2981
@devenmhadgut2981 5 жыл бұрын
How do i convert this to a steepest descent algorithm? Also why can I not see the zig zag pattern as given in various textbooks?
@paulovictordsantos
@paulovictordsantos 5 жыл бұрын
just search for minimum!
@saeedalipour5033
@saeedalipour5033 4 жыл бұрын
i need steepest descent algorithm too.have u found anything?
@prestonharris7406
@prestonharris7406 4 жыл бұрын
is it possible to do gradient descent with just one variable? I have the equation f(x) = (x-1)(x-2) with an initial guess of x =2. I really do not understand how am i supposed to perform a gradient descent on this equation?
@empossible1577
@empossible1577 4 жыл бұрын
Are you trying to find the roots (i.e. f=0) or are you trying to find minimums and maximums? The gradient descent method (GDM) is an optimizer intended to find minimums or maximums. You can use your multidimensional GDM on the function you gave. It should work without any modifications to your code. If you are looking to reformulate something specifically for 1D, I would not. 1D is a much simpler problem and better algorithms exist. The golden section search method is great. Check that one out.
@prestonharris7406
@prestonharris7406 4 жыл бұрын
@@empossible1577 I am trying to find the minimum of the function, i would prefer to use the golden section search but my professor wants me to use gradient descent for some reason. EDIT: Okay so after some debugging i know that to find the minimum i must update the position to go in the negative direction correct? But when i do x0 = x0 - gamma*gx; it just loops for infinity.
@TombRaideR133
@TombRaideR133 2 жыл бұрын
Can you share the matlab code?
@empossible1577
@empossible1577 2 жыл бұрын
This video is the MATLAB code.
@abdulrahimshihabuddin1119
@abdulrahimshihabuddin1119 3 жыл бұрын
How do I find alpha using exact line search method?
@empossible1577
@empossible1577 3 жыл бұрын
In my experience, it is trial and error. I am not aware of any exact value for alpha. Maybe I am not understanding your question.
@abdulrahimshihabuddin1119
@abdulrahimshihabuddin1119 3 жыл бұрын
@@empossible1577 I meant the step size .Once the ascent direction is known, we have to find step size,right? I thought there are different line searches methods to to find out the step size like exact line search and inexact line search methods I'm trying to implement steepest descent algorithm with exact line search method.
@empossible1577
@empossible1577 3 жыл бұрын
@@abdulrahimshihabuddin1119 I am not aware any technique that will give you the best value of alpha. In my experience, 0.1 works almost all of the time. You can also look at the magnitude of the slope. As it flattens out, smaller values of alpha may help. Be cautious about this. Otherwise, consider looking at conjugate gradients to determine step size.
@cynthiacastillo3349
@cynthiacastillo3349 5 жыл бұрын
why did you used an aproximation and not the matlab actual "gradient"?
@empossible1577
@empossible1577 5 жыл бұрын
Since the function is discrete to start with, even MATLAB's gradient() function is an approximation not really different than what was done here.
@susanwyfalamamanihuamani1817
@susanwyfalamamanihuamani1817 4 жыл бұрын
Where can i get the text book?
@empossible1577
@empossible1577 4 жыл бұрын
Here is the book I have on my syllabus... www.amazon.com/Numerical-Methods-Engineers-7-Ed/dp/9352602137/ref=sr_1_1?crid=3LJW20VU4MG2W&keywords=numerical+methods+for+engineers&qid=1577633002&s=books&sprefix=numerical+methods%2Cstripbooks%2C184&sr=1-1 While it is a good book, I don't use it much. The course materials is essentially all in the notes for the class. Here is a link to the official course website: empossible.net/academics/emp4301_5301/
@susanwyfalamamanihuamani1817
@susanwyfalamamanihuamani1817 4 жыл бұрын
@@empossible1577 thank you very much!!!!
@sabnambegam2088
@sabnambegam2088 3 жыл бұрын
Please make videos on visualizing high dimensional object into low dimension using multidimensional scalling in Matlab
@empossible1577
@empossible1577 3 жыл бұрын
Interesting...
@sabnambegam2088
@sabnambegam2088 3 жыл бұрын
@@empossible1577 thank you ... please make videos on manifold learning techniques
@empossible1577
@empossible1577 3 жыл бұрын
@@sabnambegam2088 What do you mean by "manifold?"
@sabnambegam2088
@sabnambegam2088 3 жыл бұрын
@@empossible1577 dimension reducing technique
Lecture -- Design of Optical Kinoforms
5:09
EMPossible
Рет қаралды 744
Applied Optimization - Steepest Descent
29:49
purdueMET
Рет қаралды 63 М.
Cool Parenting Gadget Against Mosquitos! 🦟👶 #gen
00:21
TheSoul Music Family
Рет қаралды 33 МЛН
НИКИТА ПОДСТАВИЛ ДЖОНИ 😡
01:00
HOOOTDOGS
Рет қаралды 3,1 МЛН
MAGIC TIME ​⁠@Whoispelagheya
00:28
MasomkaMagic
Рет қаралды 20 МЛН
the balloon deflated while it was flying #tiktok
00:19
Анастасия Тарасова
Рет қаралды 34 МЛН
Lecture -- Steepest Ascent Method
11:53
EMPossible
Рет қаралды 7 М.
MATLAB Session -- Numerical Integration
23:51
EMPossible
Рет қаралды 37 М.
Gradient descent, Newton's method
32:22
gr_teach
Рет қаралды 38 М.
MATLAB Session -- Golden Section Search
17:56
EMPossible
Рет қаралды 29 М.
Fast Inverse Square Root - A Quake III Algorithm
20:08
Nemean
Рет қаралды 5 МЛН
Why the gradient is the direction of steepest ascent
10:32
Khan Academy
Рет қаралды 325 М.
The Bubble Sort Curve
19:18
Lines That Connect
Рет қаралды 626 М.
Intro to Gradient Descent || Optimizing High-Dimensional Equations
11:04
Dr. Trefor Bazett
Рет қаралды 72 М.
How do Graphics Cards Work?  Exploring GPU Architecture
28:30
Branch Education
Рет қаралды 1,1 МЛН
Cool Parenting Gadget Against Mosquitos! 🦟👶 #gen
00:21
TheSoul Music Family
Рет қаралды 33 МЛН