Fire explanation, I appreciate you showed the top-down solution instead of jumping to the bottom up solution that no one understands
@geekydanish59902 жыл бұрын
Bottom up solution class Solution: def maximalSquare(self, matrix: List[List[str]]) -> int: dp = [[0 for j in range(len(matrix[0])+1)] for i in range(len(matrix)+1)] max_side = 0 for i in range(len(matrix)-1,-1,-1): for j in range(len(matrix[0])-1,-1,-1): if matrix[i][j] == "1": dp[i][j] = 1 + min(dp[i+1][j],dp[i][j+1],dp[i+1][j+1]) max_side = max(max_side,dp[i][j]) return max_side**2
@slambam45923 жыл бұрын
Btw, I wanted to point out a possible bug someone may make. At first, I originally wrote line 20 as: cache[r, c] = 1 + helper(aux(r, c + 1), helper(r + 1, c + 1), helper(r + 1, c)) to make it more concise, but it was failing half the tests. However, I realized that it was because you ALWAYS want to make recursive calls to the right diag down. By putting those recursive calls inside the if statement, you only make those recursive calls when you hit a '1'. If you hit a '0', your recursive functions stops there, and it doesnt call any more. Thats why you have to keep them separate
@seol1500 Жыл бұрын
had the same problem and was wondering why. thanks. you saved me tons of time.
@jrose20822 ай бұрын
watched this twice then went to implement it myself and accidentally did the bottom up solution because i had such a true understanding of the problem. they need to replace DSA in college with just your youtube channel 😂
@chenzhuo93 жыл бұрын
Thank you so much! This channel is now my to-go channel for leetcode videos! Keep it up dude!
@shadowsw80205 ай бұрын
Very good ASMR, I fell asleep and had a sweet dream :P
@vedantshinde22773 жыл бұрын
Great Explanation! If this was asked in an interview and I hadn't solved it, do you have any tips on how to go about solving it? Does this problem have a parent "classic problem"?
@zihaoyan47412 жыл бұрын
leetcode 1770,1143 are pretty similar problems, and they are all categorized as multi dimentional dynamic programming problems
@jacobgarwin56163 жыл бұрын
Is this really top down? When I tried this problem (which I struggled with greatly) I attempted to break down the largest square into smaller squares (i.e. each square is composed of 4 smaller sub-squares) and then making the recursive calls on each of these until you reach a base case of a single square. I thought the approach that I was taking would be considered top down. This seems like you are really building from the bottom up but just using a recursive function to replace the loop structure. Regardless, your answer is better. With my approach I couldn't find a way to intuitively think about memoizing past results. Do you have any advice on how I could recognize early on in the problem whether a top-down vs. bottom-up approach would be better? I spent like 2 hours on the top down answer only to get a brute force recursive approach and then struggled to implement memoization.
@mdlwlmdd2dwd302 жыл бұрын
I think you have to study how dp works first. It seems like you are confusing about dp in general. you can solve it top down or bottom up either way and if you understand DP problem in general, bottom-up is always ideal when it comes to scalability. You can only so much put on the stack calls, right? recognizing top down vs bottomup shouldnt be issue, it seems more like you recognize what recurrence relation is pertained to this problem is the real issue.
@RahulGupta-do5rv3 жыл бұрын
This is an awesome explanation! Very well done. Keep up the amazing work! :)
@NeetCode3 жыл бұрын
Thanks!
@Briansilasluke3 жыл бұрын
I recently started working on python, and used to code only in Java for all interviews. This explanation showed me ho python is superior!
@shaiksohel42472 жыл бұрын
dude i just implemented the solution in java after watching this video, what are u talking about ?? lol
@mandy13392 жыл бұрын
Thank you. I wanna cry.
@DavidWoodMusic2 жыл бұрын
Same bruh
@symbol7672 жыл бұрын
This is amazing, you broke it down so easily and perfectly, thank you bro
@sureshgangavarapu73824 сағат бұрын
O(n*m) space soln is pretty simple to understand, but it would be great if you could explain O(n+m) space solution
@princeanthony85252 жыл бұрын
Thanks for showing the recursive solution. Big help.
@smitvora3793 жыл бұрын
I think u should have implemented the dp solution as u explained it so that would have made more sense literally!
@hirak1234562 жыл бұрын
That's a really great solutio. The DP solution without the recursion took me longer to write. This is much cleaner and neet :P
@dARKf3n1Xx2 жыл бұрын
There is a way to deconstruct this problem into 1D (maximal area of a histogram) and then find the max of those results as our final area.
@edwardteach23 жыл бұрын
U a God, my implementation with 2 for-loops: class Solution(object): def maximalSquare(self, matrix): """ :type matrix: List[List[str]] :rtype: int """ dp = {} max_value = 0 rows = len(matrix) cols = len(matrix[0]) def dfs(r,c): if r < 0 or c < 0 or r >= rows or c >= cols or matrix[r][c] == "0": return 0 if (r,c) in dp: return dp[(r,c)] right = dfs(r, c + 1) diag = dfs(r + 1, c + 1) bot = dfs(r + 1, c) dp[(r,c)] = 1 + min(right, diag, bot) return dp[(r,c)] for r in range(rows): for c in range(cols): if matrix[r][c] == "1": max_value = max(max_value, dfs(r,c)) return max_value ** 2
@AnnieBox3 жыл бұрын
He is not God, he is my NanShen~~~(✿◡‿◡)
@arrows83672 жыл бұрын
thanks for the solution
@akashsuri3774 ай бұрын
completely understood great video
@handlerhandle1232 жыл бұрын
This is great but I noticed how Leetcode has a O(n) space solution and this solution has O(mn) space even though this is much clearer...I hope this solution would be good enough!
@orangethemeow2 жыл бұрын
I tried the bottom up solution, keep updating matrix class Solution: def maximalSquare(self, matrix: List[List[str]]) -> int: m, n = len(matrix), len(matrix[0]) maxLen = 0 for c in range(n): maxLen = max(maxLen, int(matrix[m-1][c])) for r in range(m): maxLen = max(maxLen, int(matrix[r][n-1])) for r in range (m - 2, -1, -1): for c in range(n - 2, -1, -1): if matrix[r][c] == "1": matrix[r][c] = (1 + min(int(matrix[r+1][c]), int(matrix[r][c+1]), int(matrix[r+1][c+1]))) elif matrix[r][c] == "0": matrix[r][c] = 0 maxLen = max(maxLen, matrix[r][c]) return maxLen ** 2
@sagarpotnis12152 жыл бұрын
awesome thanks for the solution
@stoup87782 ай бұрын
such a good explanation
@abhishekrbhat8919 Жыл бұрын
Beautiful explanation
@魏好晨2 жыл бұрын
the best question if we do repeated works if we can slice it into subproblem
@ujjawal.pandey3 жыл бұрын
"it's actually a pretty simple problem" Me who took almost 1 hour and still couldn't figure out even the recurrence relation : 👀'
@mandy13392 жыл бұрын
Simple doesnt mean easy. I also struggled with this one and it took a blow to my confidence.
@sidazhong20192 жыл бұрын
try to redo question 62, it's exactly the same.
@sharabiani3 жыл бұрын
What would be the Time Complexity if we don't use the cache in the Top-Down Recursive approach?
@adeniyiadeboye33002 жыл бұрын
thanks for the illustrative explanation
@techandmore124 ай бұрын
Why not just start at the last column, go from right to left and then go up and reapeat until you reach the first row? Much more intuitive and same time complexity. Also, why not just modify the matrix itself to save space?
@middleagedprogrammer-hl6oz Жыл бұрын
Brilliant explanation!
@sravansainath79802 жыл бұрын
Thanks mate ,there is bottom up shit every where with no top down approch
@alexbox922 жыл бұрын
Java code: import java.util.Arrays; public class MaximalSquare { static int ROWS; static int COLS; static char[][] matrix; static int maxLength = 0; //Key: row, Value: column static int[][] cache; static int maximalDPTopDown(char[][] matrix) { MaximalSquare.matrix = matrix; ROWS = matrix.length; COLS = matrix[0].length; cache = new int[ROWS][COLS]; for(int i = 0; i < ROWS; i++) { Arrays.fill(cache[i], -1); } helper(0, 0); //top left element return maxLength * maxLength; } static int helper(int row, int col) { //Base case if(row >= ROWS || col >= COLS) { return 0; } if(cache[row][col] == -1) { //True if NOT in the cache int down = helper(row + 1, col); //Check Down int right = helper(row, col + 1); //Right position int diag = helper(row + 1, col + 1); //Check Diagonally cache[row][col] = 0; if(matrix[row][col] == '1') { // //Takes the minimum off all of these 3 values: down, right and diag cache[row][col] = 1 + Math.min(down, Math.min(right, diag)); maxLength = Math.max(cache[row][col], maxLength); } } return cache[row][col]; } }
@mashab9129 Жыл бұрын
I solved it in the below way which passes : var maximalSquare = function(matrix) { const n = matrix.length, m = matrix[0].length; const dp = Array(n+1).fill().map(el => Array(m+1).fill(0)); let max = 0 for (let i = 1; i
@ShivangiSingh-wc3gk2 жыл бұрын
Such a beautiful explanation. Just wondering how did you identify that looking right, down and diagonal would help.
@dartm02 жыл бұрын
To form a square you need to check those. If one of those is 0 then you can only make a square with the one you are at.
@nikhildinesan52593 жыл бұрын
Can u add more interview questions related to dynamic programming ?
@NeetCode3 жыл бұрын
Definitely! I always shy away from DP because it takes me forever to record, but they are some of my favorite problems to solve.
@sidazhong20192 жыл бұрын
This question is the same idea as the robot walking the matrix
@maheshchandra41158 ай бұрын
This guy is awesome
@pumpkinpie7985 ай бұрын
and what to do if its asking for a maximal rectangle of 0's .. I don't understand
@VarunKaushal-zx9zq27 күн бұрын
thank you
@dollyvishwakarma22 жыл бұрын
Great explanation
@lifeofamrit37452 жыл бұрын
asked it's variation find second largest square in my Amazon interview
@AnnieBox3 жыл бұрын
kudos on your pronunciation of Huawei! (๑•̀ㅂ•́)و👍
@fieworjohn56977 ай бұрын
my code isn't passing the first testcase. can someone help spot the bug: class Solution: def maximalRectangle(self, matrix: List[List[str]]) -> int: ROWS, COLS = len(matrix), len(matrix[0]) cache = {} def fn(r, c): if r >= ROWS or c >= COLS: return 0 if (r, c) not in cache: down = fn(r+1, c) right = fn(r, c+1) diagonal = fn(r+1, c+1) cache[(r, c)] = 0 if matrix[r][c] == "1": cache[(r, c)] = 1 + min(down, right, diagonal) return cache[(r, c)] fn(0, 0) return max(cache.values()) ** 2
@rishabsharma53073 жыл бұрын
great video
@jhanvisaraswat6976 Жыл бұрын
can we do it with dfs?
@takeobeats3 жыл бұрын
i like u thank u
@chiru4969 Жыл бұрын
i guess the order in which u filled cell is wrong, your final answer may be correct
@ShivangiSingh-wc3gk2 жыл бұрын
Will this logic work for rectangles ?
@ninjaLoveTheWorld8 ай бұрын
no
@breakthecode83232 жыл бұрын
You're lit.
@ZachAdamPerez-y2q11 ай бұрын
Max square
@tombrady73903 жыл бұрын
I cant point out a fault in anyone your videos wont be surprised of you become associated to a coding bootcamp.
@elainatiller33793 жыл бұрын
what is O(n) and space ?
@sinarb28842 жыл бұрын
Cute!
@shauncrasta6198 ай бұрын
Why are we taking min in the transitions? Disappointing.
@chaitanyagupta66686 ай бұрын
this is the least detailed explanation video of yours. Disappointing.