Generating Functions -- Number Theory 29

  Рет қаралды 24,735

Michael Penn

Michael Penn

Күн бұрын

Пікірлер: 47
@lucaarmstrong6375
@lucaarmstrong6375 3 жыл бұрын
Great Video! Generating functions are one of my favourite topics in number theory
@hansolo9892
@hansolo9892 2 жыл бұрын
Generating functions is not a topic of number theory. It is more diverse. It goes in almost all fields of math as a very decent functioning tool.
@DinHamburg
@DinHamburg 9 ай бұрын
the remark on the lower left side of the board (complex numbers - modular forms) haunts me - can you please make a video which shows some intro/overview on what is to be expected there and how it works?
@stewartcopeland4950
@stewartcopeland4950 3 жыл бұрын
Excellent subject ! @23:45 q/(1- q - q^2 ) = - q/(q^2 + q -1 +5/4 - 5/4) = - q/((q + 1/2)^2 - 5/4 ) = - q/(q + 1/2 + 5^0.5/2)(q + 1/2 - 5^0.5/2) = q/5^0.5 (1/(q+ phi) -1/(q + phi')) with phi = golden number and phi' its "conjugate"; after a factorization to use geometric series formula, we find the famous expression: fn = (1/5^0.5)(phi^n - phi'^n)
@divergentmaths
@divergentmaths 2 жыл бұрын
Be careful. At 11:35 you have implicitly assumed the stability of the series. All Lucas & Fibonacci series are stable, so it worked fine here. But if you do the same move on an unstable series (such as the monotonic divergent series of natural numbers) you will get to an incorrect result.
@housamkak8005
@housamkak8005 7 ай бұрын
You do not really care about convergence or divergence when working with formal series, you can manipulate those objects without worrying about them being analytical. If they were analytical then great bonus, if not, it is just an algebraic manipulation as the polynomial is just a placeholder of our sequence.
@TimFSpears
@TimFSpears 2 жыл бұрын
HW1: I get to G(q)=(3q^2 + 2q + 1)/(1 - q^3) but I can’t get that back to the closed form to make it useful. I would have to guess that the closed form would include a modulo operation and don’t see where that will come from. Perhaps this is as far as we can go with this exercise? a sub n = n % 3 + 1
@MathFromAlphaToOmega
@MathFromAlphaToOmega 3 жыл бұрын
I think it might be interesting if you had a few introductory videos on modular forms. Even if you don't get into all the details, you could show some examples of the identities that can be proved with them.
@r.maelstrom4810
@r.maelstrom4810 3 жыл бұрын
First HW exercise: The generating function sequence is equal to (1 + q^3 + q^6 + q^9 +...) + (2q + 2q^4 + 2q^7 + 2q^10 +...) + (3q^2 + 3q^5 + 3q^8 + 3q^11 +...) = [1/1-q^3] + [2q/1-q^3] + [3q^2/1-q^3].
@梁偉康-d9k
@梁偉康-d9k 3 жыл бұрын
Vujc
@tylercrowley2559
@tylercrowley2559 2 жыл бұрын
Would you be able to find a closed form for a_n given this generating function?
@vietdungle1237
@vietdungle1237 9 ай бұрын
​@@tylercrowley2559 a_n = 1 as n = 3k 2 as n = 3k + 1 3 as n = 3k + 2 (k is an integer) Well, the definition is its own closed form pretty much
@leif_p
@leif_p 3 жыл бұрын
To check your work on the second warm-up, here are the first few terms: 3, 10, 32, 99, 301, 908, 2730
@IanXMiller
@IanXMiller 3 жыл бұрын
Here is my answer which does generate these terms. Spoiler: aₙ=15/4•3ⁿ - n/2 - 3/4
@synaestheziac
@synaestheziac 2 жыл бұрын
@@IanXMiller do you remember what you got for the generating function for the second warmup? I got (12q^2-23q+10)/[(1-q)^2*(1-3q)], but based on your final answer I probably messed something up…
@IanXMiller
@IanXMiller 2 жыл бұрын
@@synaestheziac Your denominator is right. Numerator should be 3q²-5q+3
@АндрейВоинков-е9п
@АндрейВоинков-е9п Жыл бұрын
First HW: you can get 3 first items out of sum, and then fix the sum to make it equal to original, but with q^3 multiplier
@panPetr0ff
@panPetr0ff 3 жыл бұрын
Nice introduction! Generating functions seem to be very powerful tool. I am not able to solve the SUM/0->inf/ A(n) ...where A(0)=1 and A(n) = A(n-1) (3/(2n) - 1) So will it be possible to get the result by using GF ?
@IanXMiller
@IanXMiller 3 жыл бұрын
Thanks for this question. It was a challenging problem to try after Michael's homework question to make sure I really understood how to do these. With the n in the denominator you do it similar to how Michael did the n+1 but you need to look at it being the integral of qⁿ⁻¹ (rather than the derivative like in his example). You can manipulate it and take a derivative to remove the integral to get A(q)=2(1+q)A'(q), A(0)=1. Solving this differential equation gives A(q)=sqrt(1+q) and applying McLaurin techniques turns this into a polynomial with coefficients: aₙ = (2n)! / ((2n-1) (-4)ⁿ (n!)²). For the last step, finding the sum, simply note that your sum is A(1) = √2.
@wannabeactuary01
@wannabeactuary01 3 жыл бұрын
At 4:00 does 0
@romajimamulo
@romajimamulo 3 жыл бұрын
Yeah, we assume that things always converge if it's possible for them to
@ConManAU
@ConManAU 3 жыл бұрын
It’s weird, but since we never actually use them value of q anywhere all that matters is that it converges somewhere.
@yoav613
@yoav613 3 жыл бұрын
You do not look for convervence you just want to find an
@محمودابوعلي-ش8س
@محمودابوعلي-ش8س 2 жыл бұрын
great lesson , thank you very much ❤
@cheems1337
@cheems1337 3 жыл бұрын
Wow. How come I never learned that, it seems really useful
@willnewman9783
@willnewman9783 3 жыл бұрын
I feel like it is important to phase that 1/(1-q) is literally equal to 1+q+q^2+... To me, it seems like you are suggesting that we just use the notation of 1/(1-q) for shorthand. But later in the video, you are using the fact that this is an equality, not just a shorthand, when you are solving for the closed forms.
@hydraslair4723
@hydraslair4723 3 жыл бұрын
If you suppose that the sum of sequence a sub n converges, then A(1) gives the sum of the sequence, the result of the infinite series. For sequences that surely cannot have a convergent sum, like (n+1)2^n, this still works but gives a weird result (for (n+1)2^n, it comes out 1). What is this value? Does it have any relevance?
@wannabeactuary01
@wannabeactuary01 3 жыл бұрын
Brilliant - thank you!
@weilam
@weilam 3 жыл бұрын
24:39 Good place to stop
@goodplacetostop2973
@goodplacetostop2973 3 жыл бұрын
Missed opportunity to mention 19:00 on Fibonacci day 😭😭😭
@michaelempeigne3519
@michaelempeigne3519 3 жыл бұрын
I was doing it and got a different answer : a_n = (7 / 5 ) * 5^n -( 2 / 5 ) * ( - 5 )^n for the sequence a_0 = 1 and a_1 = 9.
@renyxadarox
@renyxadarox 3 жыл бұрын
Find a closed form of generating function for the sequence aₙ=aⁿ^², n∈N, |a|
@tirthankarsingh8776
@tirthankarsingh8776 3 жыл бұрын
Thanks a lot 😀 watched your content first time.it was amazing
@shafikbarah9273
@shafikbarah9273 Жыл бұрын
What about the sequence a_n = n what's its function?
@Alex-fh4my
@Alex-fh4my 8 ай бұрын
for the sequence 1,2,3,4,5 ... the generating function is 1/(1-x)^2, which is the derivative of 1/(1-x) which has sequence, 1,1,1,1...
@evenaicantfigurethisout
@evenaicantfigurethisout 3 жыл бұрын
i think it might be a good idea to put a link to the playlist "Number Theory" in the description for the uninitiated. 😉
@CM63_France
@CM63_France 3 жыл бұрын
Hi, 23:41 : bizarre, this will not give us the characteristic equation for the golden ratio... For fun: 1:04 , 3:41 , 4:31 , 6:47 , 10:45 , 24:13 : "and so on and so forth", 8:23 : "great", 13:12 : we don't worry.
@TimFSpears
@TimFSpears 2 жыл бұрын
That’s because the expression you have derived then needs to be rewritten in the form sum n>=0 (a sub n * q^n). Then the a sub n expression will be the familiar formula.
@wolframhuttermann7519
@wolframhuttermann7519 3 жыл бұрын
By the the way, sequences added relativistically are a horror. For more information see this link: en.wikipedia.org/wiki/Velocity-addition_formula#Special_relativity
@guruji75
@guruji75 3 жыл бұрын
Thank you…
@zawodnikgrajacywosupochodz2589
@zawodnikgrajacywosupochodz2589 3 жыл бұрын
My birthday!!!
@ZainAlAazizi
@ZainAlAazizi 3 жыл бұрын
This is the base of the so-called Z-Transform 😁
@titan1235813
@titan1235813 3 жыл бұрын
Hello, Michael 👋🏻
@stmmniko7836
@stmmniko7836 3 жыл бұрын
?
@reinerwilhelms-tricarico344
@reinerwilhelms-tricarico344 6 ай бұрын
Convergence? Who cares ;-)
@ZeroG
@ZeroG Жыл бұрын
this is clearly wrong. 1+q^2 +q^3... is infinity, not 1/(1-q) which makes zero sense whatsoever
@DendrocnideMoroides
@DendrocnideMoroides Жыл бұрын
you are partially correct the formula 1+q^2+q^3=1/(1-q) only works for -1
Non-linear recursions are trickier (with a new technique!)
17:07
Michael Penn
Рет қаралды 18 М.
Who is More Stupid? #tiktok #sigmagirl #funny
0:27
CRAZY GREAPA
Рет қаралды 10 МЛН
-5+3은 뭔가요? 📚 #shorts
0:19
5 분 Tricks
Рет қаралды 13 МЛН
UFC 287 : Перейра VS Адесанья 2
6:02
Setanta Sports UFC
Рет қаралды 486 М.
the integral that Feynman('s trick) couldn't solve
17:39
Michael Penn
Рет қаралды 5 М.
Real Analysis | Equinumerosity
18:39
Michael Penn
Рет қаралды 27 М.
How you can solve dice puzzles with polynomials
10:02
Zach Star
Рет қаралды 66 М.
an absurd approach to a simple mathematics problem
14:57
Michael Penn
Рет қаралды 22 М.
Number Theory is Impossible Without These 7 Things
13:56
DiBeos
Рет қаралды 24 М.
What is the Moebius function?   #SomePi
21:15
All Angles
Рет қаралды 23 М.
This Math Book is So Famous It Has a Nickname
5:14
The Internet Sorcerer
Рет қаралды 20 М.
Olympiad level counting  (Generating functions)
34:36
3Blue1Brown
Рет қаралды 2 МЛН
Euler's Theorem -- Number Theory 12
23:53
Michael Penn
Рет қаралды 23 М.
Generating Functions made simple
12:33
Complexity Papers
Рет қаралды 1,2 М.