Who would have thought maths was an outdoors activity!
@isaacaguilar56423 жыл бұрын
Newton
@tomatrix75253 жыл бұрын
He is getting upgrades done to his setup, looks like Penn decided to bring the board outside
@nikitakipriyanov72603 жыл бұрын
you can find videos on Michael's channel where he is doing backflips on board erase cuts
@l0remipsum9913 жыл бұрын
audio is quite good outdoors, that helps with the presentation
@DeanCalhoun3 жыл бұрын
having a backyard blackboard is now a new life goal of mine
@bobdowling69323 жыл бұрын
Now that the videos are outdoors there’s nothing to stop you backflipping again.
@BikeArea Жыл бұрын
When did he execute a backflip? 👀
@henrymarkson37583 жыл бұрын
Michael Penn has definitely set the bar higher for Maths on KZbin. I would also like to (highly) recommend Michael's 94 video playlist on Differential Equations on this channel. It's gold.
@alexwolffe78053 жыл бұрын
Love how simple you make all these problems.
@cycklist3 жыл бұрын
I love how Prof Penn is always innovating. That's why he is the best maths channel on KZbin.
@nikitakipriyanov72603 жыл бұрын
I knew this trick with operator factorization, this way Dirac equation is deduced from Klein-Gordon equation; however, I didn't expect this could be used to solve an inequality.
@YoYo105423 жыл бұрын
I love the backyard filming! There’s something so playful and whimsical about it.
@goodplacetostop29733 жыл бұрын
12:51 Outdoors video PogChamp
@sinecurve99993 жыл бұрын
Mathematics in nature! Love it!
@joaovitorcb3 жыл бұрын
That was amazing! Please solve more from IMC
@heathpearson63753 жыл бұрын
It's quite straightforward to show this by solving the inhomogeneous equation Lf=u where u is a positive source term. You can find the Green's function of the IVP and then the solution is given by 3e^2x-2e^3x + an integral of the Green's function times the positive source term. You can show that this integral is positive and so the result is shown. Requires no sneaky identities or tricks.
@edskev76963 жыл бұрын
Do you mean Lf = u where u is a positive source term, and L is the differential operator?
@heathpearson63753 жыл бұрын
Ed Skev I mean to say that u is the function here and f is the source term. L is the differential operator. I didn’t use the same notation so what you said is what I mean
@oskarjung67383 жыл бұрын
Using green's function means using pseudo maths that involves the heaviside function which is not even a proper function. So, please keep your engineering/physics tricks to yourself.
@positivegradient3 жыл бұрын
Both, the location and the problem, are super cool
@txikitofandango3 жыл бұрын
Love the outdoor setting
@akuaku773 жыл бұрын
I like the backdrop much better than the usual.
@stvp683 жыл бұрын
Reminds me of when my college math class would meet outdoors
@Tiqerboy3 жыл бұрын
Wow, thank God I didn't have to take the Differential Inequality course as an undergrad. The solution to that was quite complicated! I was able to remember how to solve the differential equation though :-)
@andrewdsotomayor3 жыл бұрын
Good throwback to the older vids
@OuroborosVengeance3 жыл бұрын
I loved this simple, easy to follow example. I'd love more videos like this
@keksauraisks3 жыл бұрын
That's a really interesting method. I've never seen it before!
@shahinjahanlu21993 жыл бұрын
Me too
@riadsouissi3 жыл бұрын
Solving the DE=a with a>=0 is also straightforward. We. Get f(x) = - 2e^3x +3e^2x +a*h(x) where h(x) = 1/6+e^3x/-e^2x/2 We can show h(x) is monotone because h'(x) >=0 and hence h(x)>=h(0)=0
@nikolatesla66623 жыл бұрын
JUST LOVE IT PENNN!!!
@andcivitarese3 жыл бұрын
Algorithmically: rewrite the inequality as an Ordinary Differential Equation f''-5f'+6f=6k with k nonnegative. As shown by Michael the solution to the homogeneous differential equation is a linear combination of Exp(2x) and Exp(3x). A simple particular solution to the complete equation is the constant (and so with vanishing derivatives) f(x)=k (for this we introduced the factor "6"). So the general solution of the ODE is f(x)=AExp(2x)+BExp(3x)+k. Using the initial conditions you find A=-3(k-1) and B=2(k-1). Finally, putting all toghether and expanding you have f(x) = -3kExp(2x)+2kExp(3x)+k+3Exp(2x)-2Exp(3x). The last two terms are the given lower bound. You can factor the other terms as k(Exp(x)-1)^2(2Exp(x)+1), which is a nonnegative stuff for nonnegative k. GPS
@kezza77733 жыл бұрын
You cannot assume k is constant.
@nikoladjuric99043 жыл бұрын
It could be f"-5f'+6f=k*e^(qx),k>=0 or any nonnegative function (example: x²+x+1), so you solved one special case...
@tahirimathscienceonlinetea42733 жыл бұрын
It's very nice proof using the second method associated with nice tricks 👍👍👍
@ratnakermehta73833 жыл бұрын
Just Beautiful! And yes, "A Thing of Beauty is a Joy for Ever"!!
@tomatrix75253 жыл бұрын
These are top class. Please do some more differential eqns. If that is simethng u oike
@reshmikuntichandra45353 жыл бұрын
Michael, I suggest you to try some problems of the 2021 INMO (Indian National Mathematical Olympiad). It was sooooo hard.
@martinnyberg92953 жыл бұрын
I vote for more outdoor lectures! 😊👍🏼☀️
@roberttelarket49343 жыл бұрын
Dare you Mike to do a video for some solution while climbing vertically!
@anggalol3 жыл бұрын
Nice background, i was expecting kindergarten bg lol 😂😂😂
@ImaginaryMdA3 жыл бұрын
Oh that's lovely!
@goodplacetostop29733 жыл бұрын
Not a homework today but a suggestion (that I’ve submitted through the the form too). But I know some number theory addicts will be eager to solve it, so... There are decimal integers whose representation in some number base B = 2, 3, 4... consists of three nonzero digits whose cubes sum to the integer. For example, 43 (base 10) = 223 (base 4) = 2^3 + 2^3 + 3^3 134 (base 10) = 251 (base 7) = 2^3 + 5^3 + 1^3 433 (base 10) = 661 (base 8) = 6^3 + 6^3 + 1^3 Prove that infinitely many such integers exist. SOURCE : Crux Mathematicorum Vol. 5, No. 9 (November 1979). Submitted by Allan Wm. Johnson Jr., Washington DC.
@pardeepgarg26403 жыл бұрын
How you came so early , btw I am 2nd
@pardeepgarg26403 жыл бұрын
Solution: I don't know
@srijanbhowmick95703 жыл бұрын
Since I don't know the exact definition of a digit hence I am asking , does "digit" always mean 0,1,2,...,9 or in base x , "digit" means an integer between 0 and (x-1) inclusive ?
@abhilashsaha45903 жыл бұрын
@@srijanbhowmick9570 I think the second one.
@srijanbhowmick95703 жыл бұрын
@@abhilashsaha4590 I also think so because "decimal digits" is also a mathematical term so it must be a type of digits 👍
@lucyhaddant13033 жыл бұрын
Thanks a lot.
@CraigNull3 жыл бұрын
This is a 2nd order homogeneous DE with constant coefficients and initial conditions defined at 0 in which you can change the "=" sign of both the original equation and of the solution to ">=" and the conclusion remains true for x >= 0. What's the largest (simply stated) class of DEs where this naive conversion to an inequality works?
@shahinjahanlu21993 жыл бұрын
Great job
@elib26703 жыл бұрын
Math teachers talk about the characteristic polynomial with an air of mystery. . . but it’s literally just guessing y=e^ux
@hybmnzz26583 жыл бұрын
Because there is apparently a linear algebra connection. I still have no idea if it has anything to do with the Wronskian matrix and it's characteristic polynomial.
@mujiburrahmanhelal64593 жыл бұрын
I like your videos always.keep it up sir.respect from Bangladesh
@jingermcblabbersnitch71623 жыл бұрын
"and that's a good place to"
@MathElite3 жыл бұрын
Love the video I like the old setup better though nice work
@MichaelPennMath3 жыл бұрын
The studio is undergoing renovations so I put this together in the mean time.
@MathElite3 жыл бұрын
@@MichaelPennMath Ah ok cool
@rockyminarro17153 жыл бұрын
Could this problem be solved using Laplace transform directly from the inequality?
@BikeArea Жыл бұрын
The problem magically (dis)solves itself in rainy conditions. 😮😊
@SlidellRobotics3 жыл бұрын
Next time, put a couple of holes in the bottom of your chalk board and put a line through them and around the trees, and your left hand can relax a bit!
@utkarshsharma95633 жыл бұрын
This is some kind of big coincidence, because a few days ago, I came to know about the IMC olympiad, and today I learnt how to solve the differential equation you were solving in the beginning 😁
@prathmeshraut16163 жыл бұрын
Out door Maths Never seen before
@domc37433 жыл бұрын
Was able to solve this using differential equations tricks I learnt recently learning harmonic damping. Felt a bit cheaty because I have no understand of how it works. It's just like, let's guess that f(x) = e^rx lol
@pbj41843 жыл бұрын
Well that is how you get the characteristic polynomial right? No need to feel cheaty if you'll learn the derivations eventually :)
@jkid11343 жыл бұрын
Nice and inspires thought
@a.osethkin553 жыл бұрын
Super!
@thayanithirk17843 жыл бұрын
@8:32 IST 611 likes 0 dislikes👌
@jackychanmaths3 жыл бұрын
3:35 lower bound?
@Tehom13 жыл бұрын
Your new outdoor setup is interesting but unfortunately makes it harder to read the blackboard.
@Mathcambo3 жыл бұрын
Hello everyone. I have a lot of good math exercises for you all.
@failsmichael25423 жыл бұрын
Is this related to Grönwall’s inequality?
@santiagoferreyra55733 жыл бұрын
really nice
@sil12353 жыл бұрын
Just a detail but you said couple of times the derivative is positive and the function is increasing, but in fact in this case the derivative is "just" non-negative and the function is non-decreasing.
@schweinmachtbree10133 жыл бұрын
I think a lot of people sometimes say "increasing" instead of "non-decreasing" just because it's shorter, but you are right about positive vs. non-negative
@sil12353 жыл бұрын
@@schweinmachtbree1013 you are right, I forgot it is sometimes distinguished as increasing vs strictly increasing.
@mcwulf253 жыл бұрын
I can read the chalk better inside
@abdlazizlairgi96903 жыл бұрын
I like the view
@Veggie133 жыл бұрын
Something's different...
@binaryblade23 жыл бұрын
Why can't we set the equation =k for all k >0?
@nikoladjuric99043 жыл бұрын
Because it can be any nonnegative function like k*e^(qx), k(x²+x+1),k(e^x+x²+x-1), for positive k, x>=0, etc.
@charlesglidden5573 жыл бұрын
but f' is 2x when F = x**2 not 2x**2
@BoringExtrovert3 жыл бұрын
Hello Michael, I think a whiteboard is better for this setting. I am having slight problems telling colors apart.
@LOL-gn7kv3 жыл бұрын
Bob Ross does math?
@jermeekable3 жыл бұрын
Can we get some more pure pure theoretical focus here and there? Like maybe a run through of Godel's Theorems? Most of these vids appear to be niche solutions to equations, which they are great! Im just saying id like to see some like proofs that go out a little further than the corresponding class itd be in. Anyways still great vids!
@elie.makdissi3 жыл бұрын
good point am with you👍
@jermeekable3 жыл бұрын
@s s Ill take some topology.. whether algebraic, differential, or vanilla :)
@elie.makdissi3 жыл бұрын
@s s yeah if you want, but rather like theorems and equations and identities, you know, like the beautiful ones and rare ones, in topology for example there is the beautiful identity of Euler like V-E+F=2, you know, or to give some interesting facts that can apply to more than one problem, but not like this video, because the solution is niche and specific to this problem not to many more, it look like this imo. But don't get me wrong i like this video and it was well executed and fun, but I'd rather gain knowledge or some facts that my friends or my teachers don't know for example.
@guruone3 жыл бұрын
And that's a good place to ... have a BBQ :PPPPP............ Guru#1
@bopaliyaharshal23993 жыл бұрын
Plz see my full comment
@carterwoodson88183 жыл бұрын
In the woods today??
@michaelslack89003 жыл бұрын
This was a really cool problem. Never really considered how much you can achieve when you're not working with an equals sign in the middle