Because the 2^n is a strictly monotone and divergent sequence, one may also use Stolz-Cesàro theorem to get the answer.
@ayushmanpaul39314 жыл бұрын
Can you please show how to evaluate using the stolz-cesàro theorem
@caluire24 Жыл бұрын
at... 9:30... should be cos(1/2^2^n) ?? sum till 2^n of 1/2^k ??? does not change the result actually😂
@goodplacetostop29734 жыл бұрын
13:25
@birdbeakbeardneck36174 жыл бұрын
u popular now
@xulq4 жыл бұрын
Shouldnt it be cos(1/2^(2^n)) on the right side instead of cos(1/2^n) at 9:10 ?
@robertgerbicz4 жыл бұрын
The whole video is a big overshoot in many ways. If a(k) converges to c (finite number), then sum(k=1,n,a(k))/n converges to c (in your problem you can take a(k)=cos(1/2^k); c=1 and n=2^m (subsequence)). It is pretty trivial.
@Jaeghead4 жыл бұрын
An easier way would be to use the fact that (cos(1/k)) converges to 1, which implies that the average (1/k Σ cos(1/m)) (sum from m = 1 to k) also converges to 1.
@thefranklin64634 жыл бұрын
Jaeghead does it matter that it’s sum(cos(1/2^k)) not sum(cos(1/m))?
@Jaeghead4 жыл бұрын
@@thefranklin6463 I was just mentioning the simplified idea, in this case you use the fact that (cos(1/2^k)) converges to 1 and therefore the average of 2^n summands converges to 1.
@thefranklin64634 жыл бұрын
Jaeghead i think that’s a great simplification! I wasn’t aware of that identity before, so thanks for exposing me to it. I was curious how to show that the problem in the video could be reduced into the arithmetic mean problem.
@GhostyOcean4 жыл бұрын
Isn't the final value cos(1/2^(2^n)), not cos(1/2^n)?
@krisbrandenberger5448 ай бұрын
@ 1:41 The denominator of the argument of cosine should be 2^k, not 2^n.
@tomatrix75254 жыл бұрын
Prime example of the squeeze thm. Lovely stuff
@pcbenutzer66514 жыл бұрын
Can you pleas make a video about AGM and relation to elltiptic integrals?
@maxjackson66164 жыл бұрын
at 9:03 could you use 1 instead of cos(1/2^n) to bound the sum from above? so you'd get 1/2^n sum from 1 to 2^n of 1 which is just 1?
@AnishSarkarISIDelhi Жыл бұрын
Can't you use the fact that if the n-th term converges to a, then the ratio of partial sum and n would also converge to a?
@radhab87614 жыл бұрын
Sir please make a video on the proof of l'hospital rule
@yusufa.ratleh4674 жыл бұрын
Can you make a video about gamma function
@get21134 жыл бұрын
I think it follows easily as a Cesaro sum.
@bmenrigh4 жыл бұрын
I didn’t understand why the lower bound in the second use of the squeeze theorem was justified. The replacing 2^n with inf part. I thought we were looking at 2^n as n -> inf so that’s inf too. I must have missed something subtle or misunderstood completely?
@xCorvus7x4 жыл бұрын
In the second use the function in the middle is essentially a double limit, where once the root goes to infinity and then the product inside the root, too. Since the limit of that product is strictly less than any finite iteration of the product, we can get a lower bound to apply the squeeze theorem by replacing the interior of the root with the result of that limit.
@dugong3694 жыл бұрын
You're taking the mean of a lot (infinite number, in limit) of numbers. 100% of those numbers are infinitely close to 1 (within epsilon of 1 for any epsilon). So the mean can't be less than 1, and it can't be more (since all the numbers are less than 1). I'm guessing the theorem referred to in other comments states this more rigorously. I believe this argument can show that limit as n->infinity of 1/n * sum of cos(1/k) for k=1 to n is also 1, even though for finite n this expression is much smaller than the 2^n version.
@kingkartabyo62064 жыл бұрын
That is exactly the outline of proof of Cesaro's theorem, often showed in Real Analysis I class.
@abdelbarichedad17413 жыл бұрын
THANK U Micheal
@avrahambabkoff37764 жыл бұрын
To say lim as x->0 of sin(x)/x is 1 by l’hopitals rule is circular logic
@tahtouhladeb76714 жыл бұрын
There's a much easier answer : using cesaro theorem
@f5673-t1h4 жыл бұрын
What's that?
@ancientwisdom79934 жыл бұрын
@@f5673-t1h He's covered this here: kzbin.info/www/bejne/epSWfYt8nr2Wo7s
@ayushmanpaul39314 жыл бұрын
How to solve it using cesaro theroem
@tahtouhladeb76714 жыл бұрын
@@ayushmanpaul3931 cos(1/2^n) converges to 1 as n goes to infinity so 1/n * (sum k from 1 to n of cos(1/2^k) ) converges to 1
@Teclis19174 жыл бұрын
Hello, mister Penn. Can you please make video about series with f_n(x)=sin(n!*pi*x)?
@sujalsagtani68684 жыл бұрын
All values of x any n for which 2n²+1 is a perfect square
@sujalsagtani68684 жыл бұрын
Please make a video on it this is useful in the concept of balancers on which you made a video For example 1+2+3+4+5=7+8
@blazedinfernape8864 жыл бұрын
@Adam Romanov He is probably demanding a video from michael penn
@giuseppepapari88704 жыл бұрын
How about the limit of my patience with getting one ad every 30sec?
@douglasmagowan27094 жыл бұрын
This is overkill. At the limit, there are are infinitely many terms in the series which are arbitrarily close to 1 and finitely many that are not. We can construct a rather simple delta-epsilon argument to show that the limit approaches 1.
@f5673-t1h4 жыл бұрын
Using proof by inspection, the answer is 1.
@anupamahalder2794 жыл бұрын
So nice ❤
@cameronspalding9792 Жыл бұрын
I would have used the formula cos(x)=1+O(x^2) for all real x