a nice functional equation.

  Рет қаралды 28,685

Michael Penn

Michael Penn

Күн бұрын

Пікірлер
@gilmonat
@gilmonat 2 жыл бұрын
17:49 i think there's a mistake. Equating the arguments gives f(n)+1 = n+1 =>f(n)=n , but not f(n+1)=f(n)+1 like shown on the board. Correct reasult either way :)
@somasahu1234
@somasahu1234 2 жыл бұрын
Lol, yeah!
@amirb715
@amirb715 2 жыл бұрын
LOL...yeah obviously....big error although the final answer came out correct
@tordjarv3802
@tordjarv3802 2 жыл бұрын
That was what I thought as well.
@calde607
@calde607 2 жыл бұрын
yeah lol
@wesleydeng71
@wesleydeng71 2 жыл бұрын
A lucky error indeed!
@cosimodamianotavoletti3513
@cosimodamianotavoletti3513 2 жыл бұрын
at 16:03 we apply periodicity, but we have only proved that f(x+b-a)=f(x) if x>=a. We can prove pretty easily that y=1: f(y^2)=yf(y)
@unflexian
@unflexian 2 жыл бұрын
I think a good video topic would be Cauchy's functional equation. It's the equation f(x+y)=f(x)+f(y), and you could show the proof that solutions exist not of the form f(x)=ax, and that all such solutions are dense, i.e the function passed through all discs on the plane no matter how small.
@swenji9113
@swenji9113 2 жыл бұрын
the existence of such solutions is not trivial at all tho, it requires the use of axiom of choice and knowledge about its various equivalent forms.. how would you approach this?
@littlekeegs8805
@littlekeegs8805 2 жыл бұрын
At 17:50, I believe you meant to write that 1 + f(n) = n + 1, since that's the interior of those two functions. From that, it's immediately obvious that f(n) = n.
@ojasdeshpande7296
@ojasdeshpande7296 2 жыл бұрын
Wrong step again leads to correct solution😂
@giorgioleoni3471
@giorgioleoni3471 8 ай бұрын
At 7:30, wouldn't it be easier to write f(y) >= f(y2)=yf(y)>f(y) unless y=0?
@kimbel2804
@kimbel2804 2 жыл бұрын
A little faster way is to prove injectivity is to realise that when holding f(m+n) constant (e.g. choosing m->m+x and n->n-x) and changing x, we get arbitrarily large image of f (when n is chosen carefully), which proves that f is clearly not periodic.
@pablomartinsantamaria8689
@pablomartinsantamaria8689 2 жыл бұрын
I was thinking about just saying that if there's a period, then there would be infinite z s.t. f(z)=0, which contradicts our assumption from case 2
@andrewulinov3920
@andrewulinov3920 2 жыл бұрын
Well, you are not able to do this. When changing x your new variable (n := n-x) becomes negative, and we are working in nonnegative numbers.
@kimbel2804
@kimbel2804 2 жыл бұрын
@@andrewulinov3920 That is why we need to select n to be sufficiently large and then intuitively when we let n approach infinity, we get infinitely large image of f.
@chausolaris
@chausolaris 2 жыл бұрын
For case 2, we could set m=-n, then f(n^2-nf(n))=0, by case 2 assumption, n^2-nf(n)=0 => f(n)=n
@janekgroe4304
@janekgroe4304 2 жыл бұрын
Nah we're only talking about numbers bigger than/equal to zero so you can't just take -n. Also you're using injectivity in your argumentation which means that it doesn't make the proof any shorter since showing injectivity was the only thing taking a lot of time
@andrycraft69
@andrycraft69 2 жыл бұрын
@@janekgroe4304 You're right about the first thing, but I think he wasn't using injectivity. He argued that, since the value of the function is zero, by the assumption that we made in the second case, the only possible way to get zero is for the argument of the function to be zero.
@janekgroe4304
@janekgroe4304 2 жыл бұрын
@@andrycraft69 oh yes right I forgot we assumed "injectivity at 0"
@DeanCalhoun
@DeanCalhoun 2 жыл бұрын
at the point that we got f(m^2)=mf(m) I guess the solution would be the identity, though I wouldn’t have been able to show it. great video!
@HagenvonEitzen
@HagenvonEitzen 2 жыл бұрын
09:00 Use twice the period, i.e., f(y + 2z) = f(y+z) = f(z), leading to (y+2z-1)f(y) 0, so f(y)=0.
@jordanweir7187
@jordanweir7187 2 жыл бұрын
This is so brilliantly instructive, nice explanation
@goodplacetostop2973
@goodplacetostop2973 2 жыл бұрын
18:39 Indian flag on the thumbnail gonna bring a lot of viewers and comments…
@maxwellsequation4887
@maxwellsequation4887 2 жыл бұрын
Pro tip: Don't use country maps
@teenagekhan2439
@teenagekhan2439 2 жыл бұрын
At 13:27 you should require x>a so that m does not equal zero
@ty6339
@ty6339 2 жыл бұрын
16: 10 How do we know that f(y) = f(y + b - a), we have the periodicity only for y => a, right?
@matanah1989
@matanah1989 2 жыл бұрын
a little nagging regarding the proof using [b-a] periodicity, if you ends up with b-a=0 then there is no periodicity, the image is not necessarily finite and does not necessarily have a maximum (as in the final results). a more rigorous way is to say, assuming b-a>0 there is periodicity... concluding b-a must be 0, in contradiction
@ezequielangelucci1263
@ezequielangelucci1263 Жыл бұрын
is the same, b-a=0 means no periodicity but also means injectivity is true
@Packerfan130
@Packerfan130 Жыл бұрын
You went from f(1 + f(n)) = f(n + 1) to f(n + 1) = f(n) + 1 quoting injectivity. But wouldn't injectivity yield, f(n) + 1 = n + 1, then immediately follows that f(n) = n. If f(a) = f(b), then a = b. Here a = f(n) + 1 and b = n + 1.
@igorvereshch944
@igorvereshch944 2 жыл бұрын
you can actually get the answer from f(m^2)=mf(m) by assuming f(m)=sum of i from 1 to inf a(i)*m^i (no need for 0-th term because f(0)=0). S is sum from 1 to inf. then we get S(a(2i)*m^2i) = S(a(i)*m^(i+1)) First term is a(1)*m^2 for both, plus all a(even) are 0 because they are coefs for m^odd which exists only on the right side and it has to work for any natural m. By getting rid of all of that, Sum from 2 to inf (a(i)-a(2i-1))*m^2i = 0 so every single a(i)-a(2i-1) is 0. For any odd value of i we get a(i)=a((i+1)/2) but we'll eventually get to a(even) on the right side, so all values of a except a(1) are 0. Thus f(m)=a*m. You can find a being either 1 or 0 by putting f(m) into initial equation.
@romajimamulo
@romajimamulo 2 жыл бұрын
Now what if it was over the rationals or the reals?
@crazy4hitman755
@crazy4hitman755 2 жыл бұрын
16:03 Is it really correct that f(y)=f(y+b-a), since we have only proved that the function is periodic from some point and not in the beginning as well.
@mathflipped
@mathflipped 2 жыл бұрын
This is a tough one. Well done, Michael!
@wesleydeng71
@wesleydeng71 Жыл бұрын
It is impossible for f(x) to be periodic because f(m^2)=mf(m) can be arbitrarily large unless f(x) is always 0. This would save a lot of time.😂
@samuelbosman9572
@samuelbosman9572 2 жыл бұрын
This video was a whole lot of magic for me. Lol. Cool result!
@rohzzup
@rohzzup 2 жыл бұрын
Bonus points for using correct Indian map.
@Reliquancy
@Reliquancy 2 жыл бұрын
What type of functions have m*f(x) = f(m*x). Is it just f(x) = a*x? I know linear operators like integrals have that but I guess they aren’t functions.
@pedroteran5885
@pedroteran5885 2 жыл бұрын
Yes, because f(x)=f(x*1)=x*f(1), that is, we have a=f(1).
@juliang8676
@juliang8676 2 жыл бұрын
Can anyone help explain 9:50? Could the function no just be negative everywhere except its maximum?
@ConManAU
@ConManAU 2 жыл бұрын
In the problem statement, the function is defined as having its codomain be the non-negative integers, so f(x) can never be negative.
@lumipakkanen3510
@lumipakkanen3510 2 жыл бұрын
It could, but the original equation asks us to only look at functions from the non-negative integers to the non-negative integers.
@juliang8676
@juliang8676 2 жыл бұрын
Brill thanks guys
@joehead4081
@joehead4081 2 жыл бұрын
In the second case, how can f(n) have the behavior of "periodic after a point" if it's injective?
@ojasdeshpande7296
@ojasdeshpande7296 2 жыл бұрын
That's what...the period was b-a which is 0. This by definition of periodicity, f(x) = f(0+x) which is an identity.
@manucitomx
@manucitomx 2 жыл бұрын
Thank you, professor.
@noumanegaou3227
@noumanegaou3227 2 жыл бұрын
You have a mistake If f injective And for all n in N f(1+f(n))=f(n+1) Then 1+f(n)=n+1 Then f(n) =n
@lucachiesura5191
@lucachiesura5191 2 жыл бұрын
In general q*f(p) = f(q*p), q, p >1, but in general we can extend the function in Z, f( - k) = f(1+f(-k-1)), k>0.
@jackalexander102
@jackalexander102 2 жыл бұрын
a q p
@jackalexander102
@jackalexander102 2 жыл бұрын
w
@themathsgeek8528
@themathsgeek8528 2 жыл бұрын
Great video, prof Penn:) Thanks!
@avinashthakur80
@avinashthakur80 2 жыл бұрын
Non negative integers is called Whole numbers
@3dwardian865
@3dwardian865 2 жыл бұрын
You can prove the injectivity from periodicity directly, because periodic implies finite image, but the given assumption for large enough m gives large enough f.
@gamerpedia1535
@gamerpedia1535 Жыл бұрын
Here was my process f(m²+mf(n)) = mf(m+n) When m = 0 we get f(0) = 0 When n = 0 we get f(m²) = mf(m) m = 1 gives us f(1+f(n)) = f(n+1) Applying the inverse function on both sides gives us f(n)+1 = n+1 Or f(n)=n Meaning that our solution is f(x) = x Also, when looking at our function, we can easily see that f(x)=0 works. Less rigorous, but similar results.
@jamescollis7650
@jamescollis7650 Жыл бұрын
f has to be injective and surjective to have an inverse
@jayantanayak4981
@jayantanayak4981 2 жыл бұрын
You're soooooooooo underrated!!!
@GreenMeansGOF
@GreenMeansGOF 2 жыл бұрын
14:28 How do we know f(b) is the last value in the image?
@khoozu7802
@khoozu7802 2 жыл бұрын
x>=a, x=/=0 x=0 satisfies f(0)=0 but not satisfies f(x) =f(x+(b-a)) because it states that f(x) =/=0 for x=/=0
@khoozu7802
@khoozu7802 2 жыл бұрын
In other words it means image of f cannot have a repeating value of zero
@khoozu7802
@khoozu7802 2 жыл бұрын
However, I still think m=/=0 because m=0 has only one solution that is f(0)=0 where x=0. In this way we can prove f(1), where x=1, x>=a, a=0, or a=1. When a=1, m=x-a=1-1=0 which is not accepted. So, a=0, the repeated value of f(1)=f(1+(b-a)) =f(1+b-0)=f(b+1). Last value of the first non-repeated series=f(b+1-1)=f(b)
@YadneshSuryarao
@YadneshSuryarao Ай бұрын
An easier approach of this Set m=n=0 f(0)=0×f(0) ~f(0)=0 m=n=1 f(1+f(1))=f(2) ~f(1)=1 m=1,n=n f(1+f(n))=f(n+1) 1+f(n)=n+1 f(n)=n
@mtbassini
@mtbassini 2 жыл бұрын
So the period o f is infinite?
@Vladimir_Pavlov
@Vladimir_Pavlov 2 жыл бұрын
f(m^2 +m*f(n))=n*f(m+n). (1) Take m=n. f(n^2 +n*f(n))=n*f(2n). (2) Since f(n) represents the set of non-negative integers in the same, then looking for it in the form of a series n with non-negative degrees: f(n)= a0+ a1*n +a2*n^2 +a3*n^3 +... (3) Substituting (3) into (2) seems cumbersome, but it quickly gives the desired result. a0 + a1*(n^2+n*f(n)) +a2*(n^2+n*f(n))^2 +a3 *(n^2 +n*f(n))^3+........= = n*a0+n*a1*2*n+n*a2* (2*n)^2 + n*a3*(2*n)^3+...... a0+a1*n^2 +a1*(n*a0+n*a1*n +n*a2*n^2+n*a3*n^3+....)+ a2*(n^4 +2*n^3 *a0+...+n^2*a0+....=a0*n+2*a1*n^2 +4*a2*n^3+.... It follows that there is a trivial solution: a0= a1=a2=a3...=0, => f(n)≡0 And there is a solution a0=0, a1=1 , a2=a3=...=0. => f(n)=n. (4) Substituting (4) into (1), we get m^2+mn=n*(m+n) => m=n (we take into account that m and n are non-negative integers). Answer: f(n)=n, m=n and f(n)≡0. I note that f(n)=n the solution is not only for m=1, but for m=n.
@fullfungo
@fullfungo 2 жыл бұрын
Your step (3) is not well justified. You simply assume that f(.) is a polynomial, rather then prove it.
@aweebthatlovesmath4220
@aweebthatlovesmath4220 2 жыл бұрын
@@fullfungo he didn't assume that it was a polynomial he assumed it has a series representation which is still not allowed for functions from uncountable sets to uncountable sets but because ℕ∪{0} is countable he can assume there is a series representation...
@almafater
@almafater 2 жыл бұрын
Functional equations are cool but it’s somewhat disappointing that we almost always end up with something like f(x)=x 😅 Nice video though!
@advaykumar9726
@advaykumar9726 2 жыл бұрын
The identity function
@jimschneider799
@jimschneider799 2 жыл бұрын
I went a different way at about @1:30. After determining that f(0) = 0 with the substitution m = 0, I determined that f(m^2) = m f(m) with the substitution n = 0, from which it was pretty straightforward to prove that f(n) = C n, for some constant C. Substituting this into the original functional equation gave the only possible values for C of 0 and 1.
@bjornfeuerbacher5514
@bjornfeuerbacher5514 2 жыл бұрын
"from which it was pretty straightforward to prove that f(n) = C n, for some constant C" I don't see how this follows straightforward. Could you please explain?
@jimschneider799
@jimschneider799 2 жыл бұрын
@@bjornfeuerbacher5514 I was a bit inaccurate in my statement. It's straightforward to prove it, _assuming_ f(n) is a polynomial, which is a bit sloppy. With this assumption, f(n) = a[0] + a[1] n + a[2] n^2 + ... + a[k] n^k. Since f(0) = 0, it must be that a[0] = 0. Expanding the functions on both sides of the equation f(n^2) = n f(n) gives: a[1] n^2 + a[2] n^3 + ... + a[k] n^(k+1) = a[1] n^2 + a[2] n^4 + ... + a[k] n^(2 k) Since these are identically equal, and the expansion on the right hand side has no terms of odd degree, the coefficients of the terms of odd degree on the left hand side must all equal zero, which gives a[2 j] = 0. Equating the remaining terms gives a[2 j-1] = a[j], for all j > 1. When j is even, a[2 j-1] = 0. When it is odd, since j = 2 ((j+1)/2) - 1, j can be replaced by (j+1)/2, giving a[2 j-1] = a[(j+1)/2]. Since (j+1)/2 < j for all j > 1, and there are a finite number of integers between 0 and any finite number j, this descending sequence must eventually terminate. Further, for all odd integers j > 1, the least possible value of (j+1)/2 is 2 (this can be proved by assuming that (j+1)/2
@orbitfold
@orbitfold 2 жыл бұрын
It's very easy to solve by just setting m=1 -> f(1 + f(n)) = f(1 + n) -> f(n) = n
@ojasdeshpande7296
@ojasdeshpande7296 2 жыл бұрын
Bruh
@Cjendjsidj
@Cjendjsidj 2 жыл бұрын
You have to prove that the function is injective if you claim f(n) = n
@synaestheziac
@synaestheziac 2 жыл бұрын
Does anyone know of, or could anyone create, a functional equation which has both linear and quadratic solutions? I haven’t tried very hard to come up with one but it’s not clear to me how one would do it
@pedroteran5885
@pedroteran5885 2 жыл бұрын
There must be smarter or more elegant ones, but consider f(x+1)=f(x)^2+ 2(f(x)-x)/(x-1) +1. It seems to me (it's hard to pay full attention to tedious calculations though) that the only polynomials satisfying that equation are ax^2+bx for a+b=1. I didn't try to find an argument discarding more general functions. Here's how I generated that equation. I started with f(x+1)=x+1, obviously satisfied by f(x)=x. For the square function, we have f(x+1)=f(x)+2x+1, which is rather similar. To cram both identities in one single expression we write f(x+1)=f(x)+1+g(x) and look for some g that becomes 0 for f(x)=x and 2x for f(x)=2x. The first requirement is easy, we'll just put a factor (f(x)-x) in the definition of g to make sure it is 0. That yields x^2-x when f is the square function, while we want 2x. We just multiply by 2x/(x^2-x), that is, 2/(x-1) and we are done: both x and x^2 are solutions to f(x+1)=f(x)+1+ (f(x)-x)*2/(x-1).
@synaestheziac
@synaestheziac 2 жыл бұрын
@@pedroteran5885 awesome, thanks!
@ilias-4252
@ilias-4252 7 ай бұрын
I got a much better solution but i dont see anyone talking about it so there s a chance it s wrong: We can easily get f(0)=0 , then using the eq f(m)=f(m^2)/m and plugging in x^2 , x^4 etc we get: f(m)=f(m^2)/m=f(m^4)/m^3=....= f(m^(2^n)/m^((2^n)-1). Set u=m^(2^n), assuming m>=2 and sending n to infinity we have : f(m)=m • lim u->inf f(u)/u . The lim has to exist and be a real number (cause it s ewual to f(m) ) so we have f(m)=bm. Plugging back into the original we can easily get b=1, then just find f(1) (cause we assumed m>=2) and we are done
@ilias-4252
@ilias-4252 7 ай бұрын
This solution also kinda works even if the domain was the reals
@physicorum7107
@physicorum7107 2 жыл бұрын
Damn , the map tho , lmao , nice problem I think i have seen this one outside of the Indian TST but maybe I am just making stuff up
@brabhamfreaman166
@brabhamfreaman166 11 ай бұрын
I know it varies between mathematicians and ‘areas of interest’, but I’d really prefer you remained true and faithful to the Von Neumann (pr/ Vonn Noy-munn) natural numbers which start from Ø (ie. zero, 0), then {Ø}, {Ø,{Ø}}, {Ø, {Ø}, {Ø,{Ø}}} and so on. I’m sure you, Michael, are familiar with Undergraduate Logic & Set Theory, I just include it for completeness and interest for other readers.
@tharunsankar4926
@tharunsankar4926 2 жыл бұрын
All this only for f(x) = 0
@sadeekmuhammadryan4894
@sadeekmuhammadryan4894 2 жыл бұрын
I don't know if you feel the same or not, but functional equation is the hardest topic for me 😬
@keishakwok4333
@keishakwok4333 Жыл бұрын
No, at this point polynomials bother me more. Hopefully that changes.
@AcaciaAvenue
@AcaciaAvenue 2 жыл бұрын
I'm lost at 9:40. Why do you assume that y and z are integers? It seems to me it's just an hypotesis you made, and as such y+z = 1 can have other solutions, rather than y or z being 1 and the other being 0.
@BerfOfficial
@BerfOfficial 2 жыл бұрын
The function f is only defined for integers.
@harshuldesai8901
@harshuldesai8901 2 жыл бұрын
f is only defined for Z^nonneg \cup {0} or Z_{\geq 0}, therefore y, z are bound to be either 0 or 1 to have a sum of 1.
@anshumanagrawal346
@anshumanagrawal346 2 жыл бұрын
The question states that the domain and co domain of f is the set of non negative integers
@kishanpaswan9615
@kishanpaswan9615 2 жыл бұрын
You are great...
@stefanschroder4694
@stefanschroder4694 2 жыл бұрын
Nice🙌
@johanrichter2695
@johanrichter2695 2 жыл бұрын
Nice problem. A shame the answer is so often something simple when solving functional equations.
@larspos8264
@larspos8264 2 жыл бұрын
Just let m=-a at 13:22 and you're instantely done
@dicksonchang6647
@dicksonchang6647 2 жыл бұрын
m can not be negative
@larspos8264
@larspos8264 2 жыл бұрын
@@dicksonchang6647 why not?
@kimbel2804
@kimbel2804 2 жыл бұрын
@@larspos8264 It is in the problem statement that m and n are non-negative.
@larspos8264
@larspos8264 2 жыл бұрын
@@kimbel2804 ofcouce, I only saw the Z, my bad
@juliang8676
@juliang8676 2 жыл бұрын
Yeet
One of the coolest functional equations I have seen!
15:34
Michael Penn
Рет қаралды 46 М.
VIP ACCESS
00:47
Natan por Aí
Рет қаралды 30 МЛН
99.9% IMPOSSIBLE
00:24
STORROR
Рет қаралды 31 МЛН
BAYGUYSTAN | 1 СЕРИЯ | bayGUYS
36:55
bayGUYS
Рет қаралды 1,9 МЛН
Сестра обхитрила!
00:17
Victoria Portfolio
Рет қаралды 958 М.
a new family of irrational numbers?
12:11
Michael Penn
Рет қаралды 16 М.
Making a functional equation "work".
10:04
Michael Penn
Рет қаралды 30 М.
a notorious functional equation.
19:30
Michael Penn
Рет қаралды 29 М.
Solving An Insanely Hard Problem For High School Students
7:27
MindYourDecisions
Рет қаралды 3,6 МЛН
a combination of classic problem types
18:12
Michael Penn
Рет қаралды 489
A functional equation from Kyrgyzstan
12:02
Michael Penn
Рет қаралды 20 М.
A Functional Equation from British Math Olympiads 2009
8:33
SyberMath
Рет қаралды 37 М.
The most interesting differential equation you have seen.
21:16
Michael Penn
Рет қаралды 137 М.
what a great "double" functional equation!
13:38
Michael Penn
Рет қаралды 19 М.
Methods of Functional Equations
7:40
Prime Newtons
Рет қаралды 234 М.
VIP ACCESS
00:47
Natan por Aí
Рет қаралды 30 МЛН