A limit of a trigonometric integral.

  Рет қаралды 12,832

Michael Penn

Michael Penn

Күн бұрын

Building on our last integral video, we prove a nice result involving the limit of a certain trigonometric integral.
Last Time: • A nice integral.
Playlist: • Interesting Integrals
Please Subscribe: www.youtube.co...
Merch: teespring.com/...
Personal Website: www.michael-pen...
Randolph College Math: www.randolphcol...
Randolph College Math and Science on Facebook: / randolph.science
Research Gate profile: www.researchga...
Google Scholar profile: scholar.google...
If you are going to use an ad-blocker, considering using brave and tipping me BAT!
brave.com/sdp793
Buy textbooks here and help me out: amzn.to/31Bj9ye
Buy an amazon gift card and help me out: amzn.to/2PComAf
Books I like:
Sacred Mathematics: Japanese Temple Geometry: amzn.to/2ZIadH9
Electricity and Magnetism for Mathematicians: amzn.to/2H8ePzL
Abstract Algebra:
Judson(online): abstract.ups.edu/
Judson(print): amzn.to/2Xg92wD
Dummit and Foote: amzn.to/2zYOrok
Gallian: amzn.to/2zg4YEo
Artin: amzn.to/2LQ8l7C
Differential Forms:
Bachman: amzn.to/2z9wljH
Number Theory:
Crisman(online): math.gordon.edu...
Strayer: amzn.to/3bXwLah
Andrews: amzn.to/2zWlOZ0
Analysis:
Abbot: amzn.to/3cwYtuF
How to think about Analysis: amzn.to/2AIhwVm
Calculus:
OpenStax(online): openstax.org/s...
OpenStax Vol 1: amzn.to/2zlreN8
OpenStax Vol 2: amzn.to/2TtwoxH
OpenStax Vol 3: amzn.to/3bPJ3Bn
My Filming Equipment:
Camera: amzn.to/3kx2JzE
Lense: amzn.to/2PFxPXA
Audio Recorder: amzn.to/2XLzkaZ
Microphones: amzn.to/3fJED0T
Lights: amzn.to/2XHxRT0
White Chalk: amzn.to/3ipu3Oh
Color Chalk: amzn.to/2XL6eIJ

Пікірлер: 30
@jegasi8082
@jegasi8082 4 жыл бұрын
This is very nice, thanks for sharing!
@adityabharadwaj7665
@adityabharadwaj7665 4 жыл бұрын
hey can you please bring questions that also involve a bit of physics cause they rack your brain a lot. btw love your questions and your solutions
@goodplacetostop2973
@goodplacetostop2973 4 жыл бұрын
13:28 Daily stuff... Find an equation for the parabola x = y² + 1 rotated counter-clockwise by an angle of π/4 around the origin
@elengul
@elengul 4 жыл бұрын
Did you mean parabola, or did you mean to square the x term?
@leastsignificantbit5069
@leastsignificantbit5069 4 жыл бұрын
Thank you for another fun exercise My answer: Using formula for point (x,y) rotated around origin by an angle of p: (x',y')=(x*cos(p)-y*sin(p),y*sin(p)+x*cos(p)) and parametrization of the parabola: x(t)=t^2+1 y(t)=t (t ranges from -infty to +infty) We get: x'(t)=(t^2+1)sqrt(1/2)-t*sqrt(1/2) y'(t)=(t^2+1)sqrt(1/2)+t*sqrt(1/2) Solving for y in terms of x' and y' (sadly, I can't find any way to solve for y' in terms of x' without loss of generality), we get: y'=(y'-x')/2+((y'-x')^2/2+1)*sqrt(1/2) Derivation of formula used before: Consider point (a,b). We can express the same point as (r*cos(q),r*sin(q)), where r is distance from origin to this point and q is the angle beetween line connecting origin and (a,b) and OX axis. Then (a,b) rotated by some angle w around axis is given by (r*cos(q+w),r*sin(q+w)), which is the same as: (rcos(q)cos(w)-rsin(q)sin(w),rsin(q)cos(w)+rcos(q)sin(w)) Substituting a=rcos(q), b=rsin(q): (a*cos(w)-b*sin(w),b*cos(w)+a*sin(w)) Which is the formula used before.
@blazedinfernape886
@blazedinfernape886 4 жыл бұрын
You mean hyperbola x^2=y^2+1 The ans is xy=1 btw
@goodplacetostop2973
@goodplacetostop2973 4 жыл бұрын
@@elengul Parabola, the equation is fine
@elengul
@elengul 4 жыл бұрын
@@goodplacetostop2973 Cool, thanks for the clarification! Replacing x with (x - y)/sqrt(2) and y with (x + y)/sqrt(2), gets: x^2 + 2xy + y^2 - x*sqrt(2) + y*sqrt(2) + 2 = 0.
@riitk69
@riitk69 4 жыл бұрын
Love from india grt job sir
@arvindsrinivasan424
@arvindsrinivasan424 4 жыл бұрын
If you rewrite the sin as complex exponential, this problem is relatively easy (obv not trivial) using the residue theorem
@riadsouissi
@riadsouissi 4 жыл бұрын
What contour did you use ? I tried a semi circle but the circle part of the contour integral diverges.
@arvindsrinivasan424
@arvindsrinivasan424 4 жыл бұрын
@@riadsouissi once you re write the sin as complex exponentials, you use the geometric sum definition to express as a sum of simple complex exponentials (see Dirichlet Kernel). Then if you replace the order of the sum and integration you get something that when you use the semicircle contour vanishes as the radius goes to infinity. You get the finite sum that Michael ends with. Then you can take the limit easily as was done in the video.
@rafael7696
@rafael7696 4 жыл бұрын
Beautiful result : pi and e in a limit
@NoamK24
@NoamK24 4 жыл бұрын
Isn't that the Dirichlet Kernel? I took the course on Furrier a few years ago
4 жыл бұрын
Indeed, the best place to stop is at a pretty nice result.
@hopegarden7636
@hopegarden7636 4 жыл бұрын
Nice result but I'm gonna go and overkill this with invoking gamma functions relation to sine function...will be fun!
@stewartcopeland4950
@stewartcopeland4950 4 жыл бұрын
How can this integral converge if the sine takes an indeterminate form when n tends to infinity (oscillates between -1 and 1)?
@MrRyanroberson1
@MrRyanroberson1 4 жыл бұрын
the x^2+1 in the denominator makes it trend to 0 on either infinity
@leif1075
@leif1075 4 жыл бұрын
Wait question if you don't know the first tool is it not possible to solve this?? Seems like it.
@lost3834
@lost3834 4 жыл бұрын
👍🏻👍🏻👍🏻👍🏻👍🏻
@sakinarajpoot7577
@sakinarajpoot7577 4 жыл бұрын
I hv one question why we calculate argumnt of z in tan inverse neither in cot or sin or cosine inverse in complex plzz answr mee
@coderdemo9169
@coderdemo9169 4 жыл бұрын
Iover of integration
@riitk69
@riitk69 4 жыл бұрын
Am in class 11 preparation for iit and watching this 😁😁
@adityabharadwaj7665
@adityabharadwaj7665 4 жыл бұрын
been there done it jee 2020
@riitk69
@riitk69 4 жыл бұрын
@@adityabharadwaj7665 hope so but who are u
@chhabisarkar9057
@chhabisarkar9057 4 жыл бұрын
@@riitk69 why always relate maths and calculus to iit ? Iit isnt everything in your life , just enjoy maths and thats it .
a nicer way to write a solution?
8:46
Michael Penn
Рет қаралды 11 М.
A great integral calculus review in one problem!!
19:26
Michael Penn
Рет қаралды 55 М.
Маусымашар-2023 / Гала-концерт / АТУ қоштасу
1:27:35
Jaidarman OFFICIAL / JCI
Рет қаралды 390 М.
Какой я клей? | CLEX #shorts
0:59
CLEX
Рет қаралды 1,9 МЛН
Хаги Ваги говорит разными голосами
0:22
Фани Хани
Рет қаралды 2,2 МЛН
A nice integral.
21:21
Michael Penn
Рет қаралды 45 М.
A floored limit.
16:32
Michael Penn
Рет қаралды 13 М.
A nice integral.
12:59
Michael Penn
Рет қаралды 44 М.
The 7 Levels of Math Symbols
14:03
The Unqualified Tutor
Рет қаралды 49 М.
these are the habits of the top 1% students, that you can do.
12:58
Powerpoint About Vouchers
23:30
Flare
Рет қаралды 20 М.
Praggnanandhaa crushes his opponent with a queen sacrifice in 29 moves
15:26
limit, derivative, integral all in one!,
8:29
blackpenredpen
Рет қаралды 68 М.