A viewer suggested algebra problem.

  Рет қаралды 27,105

Michael Penn

Michael Penn

Күн бұрын

Пікірлер: 103
@robertgerbicz
@robertgerbicz 3 жыл бұрын
Faster way: from (a+6)^2=4*a*b a is clearly even, and divides (a+6)^2, hence a|36. This leaves only a=2,4,6,12,18,36. We can check easily these, or using that 4 does not divide a we get that a=2,6,18 and all of these are the solutions.
@fansuli427
@fansuli427 3 жыл бұрын
yes
@f5673-t1h
@f5673-t1h 3 жыл бұрын
To add more words to your solution: a|36 because reducing the equation mod a gives 6^2 is congruent to 0 mod a.
@gaeb-hd4lf
@gaeb-hd4lf 3 жыл бұрын
Nice 👌🏽
@Tiqerboy
@Tiqerboy 3 жыл бұрын
I did end up getting a = 2, 6 and 18 and I saw that nothing else would work, but I needed a calculator to work out b in all three cases. If you do that you get b= 14, 12 and 14. So the three solutions (a,b) are (2,14), (6,12) and (18,14) I'm guessing for these kinds of problems, a calculator is not allowed.
@ricardocavalcanti3343
@ricardocavalcanti3343 3 жыл бұрын
@@Tiqerboy You should buy a new calculator. :-) The solutions are (a,b) = (2,8), (6,6) and (18,8).
@ConradAdamsMrJUMBO
@ConradAdamsMrJUMBO 3 жыл бұрын
Wow, what a nice surprise! I've never thought that something I suggested would get featured in a video.🤓 thanks Michael...
@6d16chanyaukievanzkenith4
@6d16chanyaukievanzkenith4 3 жыл бұрын
Nicee
@zeravam
@zeravam 3 жыл бұрын
Congrats! I'm still waiting the exercise I suggested to Michael. Patience is a virtue I have
@tomatrix7525
@tomatrix7525 3 жыл бұрын
Nice problem
@loglnlg
@loglnlg 3 жыл бұрын
When approximately did you suggest this problem? I'm just asking to have a glimpse idea about time of considering viewers problems
@adamswilliam3462
@adamswilliam3462 3 жыл бұрын
@@loglnlgI think it took at least a few (3-4) weeks!😂 and yes, I have three accounts. 📱🖥📲
@goodplacetostop2973
@goodplacetostop2973 3 жыл бұрын
12:53 Homework : Solve this problem over all integers (Z) 13:02 Good Place To Stop
@WillCummingsvideos
@WillCummingsvideos 3 жыл бұрын
11:08
@derekcresswell7352
@derekcresswell7352 3 жыл бұрын
These are exactly the type of videos I want to watch. I really enjoy your style. Please keep them coming.
@raystinger6261
@raystinger6261 3 жыл бұрын
About the claim 4∤a: Professor Penn tends to make claims ahead of time and then prove them, leaving the student to believe they should had come up with that claim by themselves. But there's a way to naturally come up with that claim. So at 3:28, we came to the conclusion that a must be even. So we can say a=2c, which gives us: (a + 6)² = 4ab => (2c + 6)² = 8bc 4(c + 3)² = 8bc c² + 6c + 9 = 2bc We have that 2bc is even, so the left hand side must also be even. We know 6c is even and 9 is odd, so (6c + 9) is odd, but given that LHS must be even, then c² must be odd as well => c is odd => 4∤a
@lunstee
@lunstee 3 жыл бұрын
Rather than expand out the square, I would have just left the last line as (c+3)²=2bc . The right side being even implies c+3 is even, which means c must be odd. On the other hand, expanding things out does help with seeing the other constraints. If we divide out your last row by c, we get c+6+9/c = 2b. The left side can only be integer (2b) if c is 1, 3 or 9. All these are solutions.
@paulbarbat1926
@paulbarbat1926 3 жыл бұрын
I think you can take the puzzle a step further : Find all (a, b) among the integers, such that for a given c among the real numbers, you have : Y1 = a*x + c, and Y2 = x*Y1 + b have a unique intersection point
@SamEden
@SamEden 3 жыл бұрын
"Two times three has a little bit nicer of a form" 😂
@juanpablogonzalez7130
@juanpablogonzalez7130 3 жыл бұрын
If you use quadratic equation many times, you can find that b=6 and b=8 are the only solutions. The case of b=6 is trivial, and the b=8 a consequence from pythagorean triples.
@donaldbiden7927
@donaldbiden7927 3 жыл бұрын
Hi Michael ! Great problem ! Just a way to reduce all the work. When u got (a+6)^2=4ab, u could have just written a^2+a(12-4b)+36=0 \implies the discriminant must be a perfect square. Hence we get b^2-6b=s^2 for some ‘s’. Next, we complete the square by adding a 9 and then factorise things using a^2-b^2=(a+b)(a-b)
@kevinmartin7760
@kevinmartin7760 3 жыл бұрын
I went that way too, but I just solved b(b-6)=s^2 by trial and error. I don't know if I would have to go to the same amount of trouble as Michael did to prove that b=8 (thus a=2 or 18) and b=6 (thus a=6) are the only solutions. You also get b=0 as a solution to b(b-6)=s^2 but this yields a=-6 which is not a natural number and so is not a solution to the overall problem.
@bilalabbad7954
@bilalabbad7954 2 жыл бұрын
I love your explanation .it is clear and organized
@txikitofandango
@txikitofandango 3 жыл бұрын
My method can be easily expanded to cover the integers. Set 12-4b to equal the other sums of pairs of factors of 36 (the even ones, obviously). 12-4b = 20 => b = -2 => a = -18 or a = -2 12-4b = 12 => b = 0 => a = -6
@khaido07
@khaido07 2 жыл бұрын
I love how it began as an algebra problem but then it gets more onto arithmetic when he starts to talk about even numbers and divisibility
@manucitomx
@manucitomx 3 жыл бұрын
This was a great problem. Thank you, professor!
@renatsamur9099
@renatsamur9099 3 жыл бұрын
Great video. I came up with a slightly different solution for those interested. When we got to (a^2 + 12a +36)/4a = b, I distributed the 1/4a to give a/4 +3 + 9/a which as b is a natural number, a/4 + 9/a is also a natural number. This gives (a^2 +36)/4a is an integer so 4a|a^2+36. This means 4|a^2 +36 and a|a^2+36 giving 4|a^2 and a|36. From 4|a^2, a is even. Going back to a/4 + 9/a is a natural number we can see that as a is even, 9/a is not a natural number so a/4 cannot be one too so 4 does not divide a. Now choosing all a which are even, not divisible by 4 and factors of 36 gives a=2,6,18 with solutions b=8,6,8 respectively from (a^2 + 12a +36)/4a = b.
@alric8
@alric8 3 жыл бұрын
I did this problem exactly the same until 2:48 at which point I divided the entire equation by a. This means that you can just check the 6 values of a which divide 36, which is admittedly boring but far more straightforwards.
@dneary
@dneary 3 жыл бұрын
I got there a little more quickly by dividing the equation (a+6)^2=4ab by a, giving 4b=a+12+(36/a) with a = 2 mod 4 - leaving only 3 options that have 4b being an integer: 2, 6, 18 (similarly, over integers, a \in {-18, -6, -2, 2, 6, 18}, b \in {-2, 0, -2, 8, 6, 8})
@roberttelarket4934
@roberttelarket4934 3 жыл бұрын
A good place to START your suggested homework assignment.
@eneapane7594
@eneapane7594 3 жыл бұрын
Hello. Could you please switch this cool shade with the old one? I find it really hard concentrating with this color.
@IamBATMAN13
@IamBATMAN13 3 жыл бұрын
Another really great problem, thanks for everything prof
@lmattas
@lmattas 3 жыл бұрын
Such a Nice resolve to the problem, thanks!!!
@mpdcm
@mpdcm 3 жыл бұрын
You also have to check the case a=0
@mikeh283
@mikeh283 3 жыл бұрын
(a+6-2b)^2-(2b-6)^2=6^2. By the Diff of two squares: a-4b+12=(one divisor of 36), a= (the other, corresponding divisor of 36). How many ways are there to split 36? Any choice involves 4 solutions with permutations and negatives.
@liberatednow6013
@liberatednow6013 3 жыл бұрын
Hi could you try out some math in higher dimensions... that would be cool!
@guigazalu
@guigazalu 3 жыл бұрын
You're saying, like, complex numbers and stuff?
@aaademed
@aaademed 2 жыл бұрын
When you think that it's an algebraic problem but most of the time we spend on number theory
@arjunverma963
@arjunverma963 3 жыл бұрын
7:42 could someone explain what he meant by it, i wasnt able to grasp it
@DavidCorneth
@DavidCorneth 3 жыл бұрын
He writes a as twice an odd number, i.e. {2, 6, 10, 14, ...}. However he already checked 2 so he's left with a in {6, 10, 14, ...}. Any of those numbers is divisible by an odd prime p. He goes to show that this odd prime must be 3. Makes more sense?
@stewartcopeland4950
@stewartcopeland4950 3 жыл бұрын
@@DavidCorneth Why do we exclude for example the value a = 2x3x5 = 30 which also fulfills the 3 conditions: 30 is even, is not a multiple of 4 and 3 divides 30 ?
@DavidCorneth
@DavidCorneth 3 жыл бұрын
@@stewartcopeland4950 Yes, it fulfills those three conditions but another fails. We have (a + 6)^2 = 4*a*b. If some prime p | a is larger than 3 then we also know that p | 4*a*b since p | a and a | 4*a*b. However p doesn't divide a + 6 since if p | a + 6 and p | a then by doing one step of the euclidean algorithm we have p | 6. But we said p > 3 so that's impossible. In particular 5 doesn't divide 6 so we can immediately see that a = 30 can't give a solution since 5 | 30 and 5 is a prime > 3. See?
@DavidCorneth
@DavidCorneth 3 жыл бұрын
@@stewartcopeland4950 Maybe try this: find a such that 5 | a and 5 | a + 6. Can you find such a?
@stewartcopeland4950
@stewartcopeland4950 3 жыл бұрын
@@DavidCorneth Thanks for your lighting, it's nice to see that you are concerned about "after sales service"
@debdami
@debdami 3 жыл бұрын
Does N include 0 ? In that case, any b will fit for a=0. No parabola, but two lines, one horizontal and one of slope 6, with only one intersection.
@shahjahanishaq1728
@shahjahanishaq1728 3 жыл бұрын
How do we come up with the claim that 'a' cannot be a multiple of 4 in the first place? What does that 'playing around a little bit' refer to?
@hazalouldi7130
@hazalouldi7130 Жыл бұрын
what about 2 solutions reals or complexes?there are many integers
@wospy1091
@wospy1091 3 жыл бұрын
I did it slightly different. I got -36=a(a+12-4b), so a is a divisor of 36 (1,2,3,4,6,9,12, or 36). Then it's just a matter of checking those 8 cases.
@mcwulf25
@mcwulf25 3 жыл бұрын
Excellent, more than one solution! How did he know to check a as a multiple of 4?
@f5673-t1h
@f5673-t1h 3 жыл бұрын
If the natural numbers are defined to contain 0, then a = 0 and b any natural are solutions.
@adamswilliam3462
@adamswilliam3462 3 жыл бұрын
“a” can’t be 0 since y = ax^2 + 6x + b wouldn’t be a parabola.
@henkhu100
@henkhu100 3 жыл бұрын
@@adamswilliam3462 Why should the graf be a parabola? That is not mentioned in the problem definition
@williamadams137
@williamadams137 3 жыл бұрын
@@henkhu100 At the very start Michael said it was a parabola. Furthermore, it was how I wrote the problem. But sure, if the problem statement was literally “Find all pairs of integers (a,b) such that the graphs of y = ax^2 + 6x + b and y = ax + 6 intersect exactly once.” , then a = 0 and b being any integer would be solutions.
@henkhu100
@henkhu100 3 жыл бұрын
​@@adamswilliam3462 If you look at the problem definition you don't see anything about the fact that the graph of the function has to be a parabola. That Michael makes that statement is his own interpretation of the problem, In fact he solves another problem than the problem on the board.
@henkhu100
@henkhu100 3 жыл бұрын
@@williamadams137 If you look at the problem definition you don't see anything about the fact that the graph of the function has to be a parabola. That Michael makes that statement is his own interpretation of the problem, In fact he solves another problem than the problem on the board. And my remark is about that problem because that's the problem we have to solve.
@knotwilg3596
@knotwilg3596 3 жыл бұрын
There are a few ways to get to the fact that (a+6)²/4a = (a²+12a+36)/4a must be natural from that follows that 4|a² so a=2k and 2k|k²+6k+9 so k|9 so k=1,3,9 so a=2,6,18
@DavidCorneth
@DavidCorneth 3 жыл бұрын
ax^2 + 6x + b = ax + 6 gives (ax + 6)*(1-x) = b. The parabola has zeros at x = 1 or x = -6/a so the vertex at x = (1 + -6/a)/2 = 1/2 - 3/a. Plugging that in gives after some shuffling (a + 6)^2 = 4ab. odds and multiples of 4 give a contradiction so a is of the form 4k + 2. Furthermore we have 36 = a*(4b - a - 12) so a|36. The odd divisors of 36 are 1, 3 and 9 so possible values of a are twice those i.e. a in {2, 6, 18} checking those gives the desired solutions (a, b) in {(2, 8), (6, 6), (18, 8)} as shown by Michael.
@tanusrimalakar9357
@tanusrimalakar9357 3 жыл бұрын
Superb explaination Sir
@clembat1
@clembat1 3 жыл бұрын
Where can we suggest problems please? Thanks!
@alfykerolous1869
@alfykerolous1869 Жыл бұрын
why michael all these stuff we observe that (a+6)^2 is a perfect then 4 ab must be a perfect too so a =b and so on a =6 and by ur observatoin 4ab is even then a+6 is even then a at least =2 at the form of (2n) set it = 2n and solve u found that 2b= n+6+9/n and bcs b is and int then n must be equal to 1 2 3 9 and by trying all of them we find the correct one s
@Bozzigmupp
@Bozzigmupp 3 жыл бұрын
At 8:45, why does P have to be able to be divisible by 6
@DavidCorneth
@DavidCorneth 3 жыл бұрын
We have p | a and p | a+6 so by applying one step of the euclidean algorithm we have p | (a + 6) - a = 6 i.e. p | 6.
@2070user
@2070user 3 жыл бұрын
Another way is to rewrite those into equations. p|a and p|(a+6) means a=p*k₁ and (a+6)=p*k₂ where k₁ and k₂ are natural numbers we can substitute a=pk₁ into the second equation pk₁+6=pk₂ 6=pk₂-pk₁=p(k₂-k₁) since 6=p*(k₂-k₁) so that means p|6
@txikitofandango
@txikitofandango 3 жыл бұрын
I did it in a totally different way, so it was fun to see a different approach than what I used, and how they intersect! The equation ax^2 + 6x + b = ax + 6 has exactly one solution in x. Equivalently: ax^2 + (6-a)x + b-6 = 0 has one solution. The discriminant (6-a)^2 - 4a(b-6) = 0 a^2 + (12-4b)a + 36 = 0 This quadratic in a will factor when 12 - 4b = plus or minus 12, 13, 15, 20, or 37, which is what you get by multiplying pairs of factors of 36. The only natural numbers b that satisfy this are 6 and 8. The middle coefficient of the quadratic can be 12 - 4(6) = -12 or 12 - 4(8) = -20. If b = 6 then a^2 - 12a + 36 = 0 => a = 6 If b = 8 then a^2 - 20a + 36 = 0 => a = 2 or a = 18 Solutions: (6,6), (2,8), (18,8) Let's see how I did!
@txikitofandango
@txikitofandango 3 жыл бұрын
Cool, I got the right answers in a totally different way. So I learned double!
@emmepombar3328
@emmepombar3328 3 жыл бұрын
The question is also: Find all tangent lines g for parabola p. Couldn't we use, that a is just p'?
@hasanjakir360
@hasanjakir360 3 жыл бұрын
What if a=0 ?
@tonyhaddad1394
@tonyhaddad1394 3 жыл бұрын
(a,b) (2,8) (6,6) (18,8)
@Happy_Abe
@Happy_Abe 3 жыл бұрын
How by showing p=3 and knowing p divides a do we know a has to be 2(3^m) Why can’t it be two times 3 times some odd number because p=3 divides 3 times an odd.
@petersievert6830
@petersievert6830 3 жыл бұрын
Because that would mean there is another odd prime factor in a. But any prime factor of a needs to divide 6. There is no other odd prime factor but 3 doing that.
@Happy_Abe
@Happy_Abe 3 жыл бұрын
@@petersievert6830 thanks
@siulibasak3804
@siulibasak3804 3 жыл бұрын
We can also solve it by doing discriminant = 0 (6-a)²-4a(b-6)=0 => a²-(4b-12)a+36=0 mn=36 & m+n=4b-12 After solving this we get all the solutions.....
@prathmeshraut1616
@prathmeshraut1616 3 жыл бұрын
Micheal I am beginning my calculas of Higher education any suggestion u would like to give
@horishok_voloskiy
@horishok_voloskiy 3 жыл бұрын
те відчуття, коли в старших класах звичайної загальноосвітньої школі строчив тригонометрію як соняшникове насіння, а зараз, через майже 20 років ледве згадуєш ті формули і рівняння
@ricardocavalcanti3343
@ricardocavalcanti3343 3 жыл бұрын
Não entendi.
@cernejr
@cernejr 3 жыл бұрын
Very nice.
@karl131058
@karl131058 2 жыл бұрын
Why are people so fond of proof by contradiction? To prove 4 does not divide a, use: a IS even, so a =: 2d => (2d+6)^2=4*2db ! Now pull out 2^2 from the square on the left side and divide by 4 => (d+3)^2=2db ! Right side is even, so left side is even, too. So d+3 is even, so d is odd! (done)
@CM63_France
@CM63_France 3 жыл бұрын
Hi, Ok, great!
@hitchikerspie
@hitchikerspie 3 жыл бұрын
λ=(z+i)/(z-i) Where z = a + ib When does λ belong to the real numbers?
@tobiasgorgen7592
@tobiasgorgen7592 3 жыл бұрын
b = a³ / (a²+a) ?
@manjunathbhat6934
@manjunathbhat6934 3 жыл бұрын
When a = 0 and b not equal to 1
@hitchikerspie
@hitchikerspie 3 жыл бұрын
@Federico Rulli Yeah this is it, but the proof is a bit longer expanding out and multiplying by complex conjugates :)
@tobiasgorgen7592
@tobiasgorgen7592 3 жыл бұрын
@@hitchikerspie hm, I wonder where I went wrong. I expanded the Frac and ended up with a complex number where leting "b" = 0 left me with my solution.
@36sufchan
@36sufchan 3 жыл бұрын
If λ is real, so is λ+1/λ-1 using good ol componendo dividendo, z/i is real => z is purely imaginary Though I don't know how I'll show this comprises of all the solutions
@Tiessie
@Tiessie 3 жыл бұрын
This color palette feels a bit too cold
@giuseppemalaguti435
@giuseppemalaguti435 3 жыл бұрын
Come sei caduto in basso!!!!
@haziqthebiohazard3661
@haziqthebiohazard3661 3 жыл бұрын
a = 0 and b is any number works too doesn't it
@TJStellmach
@TJStellmach 3 жыл бұрын
Not over the natural numbers (given the meaning of that term specified in the video).
@mepoor761
@mepoor761 3 жыл бұрын
I love this color
@Dshado
@Dshado 3 жыл бұрын
You said you were playing with colour palettes, and I don't think this one is nice. It's too blue and "surgical" in my opinion
@呂永志
@呂永志 3 жыл бұрын
missing solution: a=0, b is any natural number.
@tranbachnguyen5108
@tranbachnguyen5108 3 жыл бұрын
Not a good place to stop yet. You forgot a=0.
@TJStellmach
@TJStellmach 3 жыл бұрын
No, he didn't. Maybe re-watch the video to see why.
@armacham
@armacham 3 жыл бұрын
There are two "a" and two "b" in this problem. Not good! The first "a" is listed in the problem itself (y=ax+6). The second "a" is from the quadratic formula. The same exact thing happens with the letter "b."
@advaykumar9726
@advaykumar9726 3 жыл бұрын
First
using algebraic symmetry
6:03
Michael Penn
Рет қаралды 21 М.
The smallest such prime...
16:44
Michael Penn
Рет қаралды 57 М.
UFC 287 : Перейра VS Адесанья 2
6:02
Setanta Sports UFC
Рет қаралды 486 М.
«Жат бауыр» телехикаясы І 30 - бөлім | Соңғы бөлім
52:59
Qazaqstan TV / Қазақстан Ұлттық Арнасы
Рет қаралды 340 М.
Who is More Stupid? #tiktok #sigmagirl #funny
0:27
CRAZY GREAPA
Рет қаралды 10 МЛН
can you do the hardest problem from the European Mathematical Cup??
26:43
Researchers thought this was a bug (Borwein integrals)
17:26
3Blue1Brown
Рет қаралды 3,9 МЛН
A cool divisibility fact.
18:01
Michael Penn
Рет қаралды 23 М.
The Goat Problem - Numberphile
16:52
Numberphile
Рет қаралды 865 М.
The SAT Question Everyone Got Wrong
18:25
Veritasium
Рет қаралды 15 МЛН
When is the reciprocal the inverse?
19:58
Michael Penn
Рет қаралды 56 М.
The Reciprocals of Primes - Numberphile
15:31
Numberphile
Рет қаралды 1,6 МЛН
Let's talk about Heron's formula (example and proof)
17:47
bprp math basics
Рет қаралды 8 М.
Irish Math Olympiad | 2009 Question 3
20:14
Michael Penn
Рет қаралды 117 М.
Why do calculators get this wrong? (We don't know!)
12:19
Stand-up Maths
Рет қаралды 2,2 МЛН