what a nice integral!

  Рет қаралды 5,527

Michael Penn

Michael Penn

Күн бұрын

🌟Support the channel🌟
Patreon: / michaelpennmath
Channel Membership: / @michaelpennmath
Merch: teespring.com/...
My amazon shop: www.amazon.com...
🟢 Discord: / discord
🌟my other channels🌟
mathmajor: / @mathmajor
pennpav podcast: / @thepennpavpodcast7878
🌟My Links🌟
Personal Website: www.michael-pen...
Instagram: / melp2718
Twitter: / michaelpennmath
Randolph College Math: www.randolphcol...
Research Gate profile: www.researchga...
Google Scholar profile: scholar.google...
🌟How I make Thumbnails🌟
Canva: partner.canva....
Color Pallet: coolors.co/?re...
🌟Suggest a problem🌟
forms.gle/ea7P...

Пікірлер: 31
@goodplacetostop2973
@goodplacetostop2973 10 сағат бұрын
0:04 Bless you 0:07 Actual start
@mtaur4113
@mtaur4113 9 сағат бұрын
4 seconds of hard work, not gonna throw that away, we have come too far.
@Cloud88Skywalker
@Cloud88Skywalker 8 сағат бұрын
Help, please. I couldn't find a good place to stop and now I'm lost.
@jay_13875
@jay_13875 9 сағат бұрын
If we introduce I(b) = int_{-infty}^0 e^y/y * sin(b*y) dy, we get dI(b)/db = int_{-infty}^0 e^y * cos(b*y) dy, which is known to be 1/(1+b^2). (basically the Laplace transform of cos(b*t) evaluated at s=1 after substituting t=-y) Therefore I(b) = arctan(b) + C. And since I(0) = 0, we have C = 0, giving us I(1) = arctan(1) = pi/4.
@rotoboravtov4354
@rotoboravtov4354 9 сағат бұрын
4:15 After getting the dz integral we can use exponential formula for sin and immideately get the last integral using the fact \int_0^inf e^(az)=1/a
@maurobraunstein9497
@maurobraunstein9497 Сағат бұрын
Clever! I did this integral less cleverly but I still got the answer, which doesn't usually happen with these integral videos. I also did the substitution, which gives the integral of sin(y)e^(y)/y dy from -∞ to 0, but then I got a bit stuck (because I never think of differentiating under the integral sign) so I just... turned sin(y)/y into an infinite series, the sum from n = 0 to ∞ of (-1)^n · y^(2n)/(2n + 1)!. Then it's just integration by parts. If f(n) = ∫y^(n)·e^y dy from -∞ to 0, you can easily see that f(0) = 1, and by applying integration by parts, you get that f(n) = -n·f(n - 1), so f(n) = (-1)^n · n!. This eventually gets you to the integral as 1 - 1/3 + 1/5 - 1/7 + ..., which is a series that converges to π/4 *famously* slowly. I feel like I got lucky that I remembered that series. Not sure I would have been able to get π/4 from that otherwise.
@dalek1099
@dalek1099 2 сағат бұрын
I did it by writing sin(alnx)/lnx with feynman's trick the derivative becomes cos(alnx)=Re(e^(ialnx))=Re(x^(ia)). Then integrate, to get Re(1/(1+ia))=Re((1-ia)/(a^2+1)=1/(a^2+1). Integrate to give arctana+C. Setting a=0 gives the integral=0 because sin0=0. Therefore, we get arctana and setting a=1 we get arctan1=pi/4.
@SuperSilver316
@SuperSilver316 10 сағат бұрын
Feynman’s trick or something
@TheEternalVortex42
@TheEternalVortex42 9 сағат бұрын
Feynman's trick is pretty much the same thing as what Michael did.
@AndyBaiduc-iloveu
@AndyBaiduc-iloveu 10 сағат бұрын
Feymanns trick or contour integration seems good
@karlyohe6379
@karlyohe6379 2 сағат бұрын
Okay. That was like a f*cking magic trick :D
@barryzeeberg3672
@barryzeeberg3672 2 сағат бұрын
Need a good place to start :)
@demenion3521
@demenion3521 10 сағат бұрын
i think writing sin(y) in exponential form gives the same result a bit quicker.
@BikeArea
@BikeArea 8 сағат бұрын
0:04 You should do more backflips again to relax your muscles. 😮 😏
@tm8539
@tm8539 4 сағат бұрын
I don't understand, it's a beautiful feeling, I wanna understand so much!
@mr.soundguy968
@mr.soundguy968 2 сағат бұрын
And that's a good place to stop
@holyshit922
@holyshit922 9 сағат бұрын
t = -ln(x) L(f(t)/t) where f(t) = sin(t) then plug in s = 1
@sqigger
@sqigger 10 сағат бұрын
Another way to do it: sin(log(x)) = (x^i - x^(-i))/2i I(p) = int from 0 to 1 (x^(p*i) - x^(-i))/log(x) dx And there you go.
@solcarzemog5232
@solcarzemog5232 9 сағат бұрын
Why this? Can you elaborate?
@rotoboravtov4354
@rotoboravtov4354 9 сағат бұрын
@@solcarzemog5232 sin(x) = (e^(ix) - e^(-ix))/(2i). This is a bit loose but correct application of complex analysis.
@sqigger
@sqigger 4 сағат бұрын
@@rotoboravtov4354 yea, my bad 😅
@gghelis
@gghelis 8 сағат бұрын
B-b-but where's the good place to stop?
@robblerouser5657
@robblerouser5657 9 сағат бұрын
What did you do in the third step when you introduced "z" into the integral?
@mtaur4113
@mtaur4113 9 сағат бұрын
Looks like sin(u)e^u/u du to me. That u denominator looks rough though. Maybe there is a definite-integrals-only trick too. 🤔
@phatguardian
@phatguardian 8 сағат бұрын
Why didn’t he just restart filming 😂
@stevenpurtee5062
@stevenpurtee5062 3 минут бұрын
Why do you always skip over the details of if/how to change the order of integration. That's an interesting and important step. You have at least said "by Fubini's Theorem" before, but it think it would be important and interesting to go through the steps.
@EliavShalev
@EliavShalev 10 сағат бұрын
Lol you way overcomplicated it. Could have easily solved it using the properties of the laplace transform.
@AndyBaiduc-iloveu
@AndyBaiduc-iloveu 10 сағат бұрын
Can you teach me how to do that? I only have learned a little about it when we use it to solve differential equations
@EliavShalev
@EliavShalev 7 сағат бұрын
@ sure! First you do the substitution that he did and convert the integral to that of -(sin(x)/x)e^(-x) from 0 to inf this is the laplace transform of sinx/x and from the properties of the laplace transform we know that L(f(t)/t) = L(f(t)) integrated from s to inf thus the result is the integral of 1/(x^2+1) from s to inf with s=1
@AndyBaiduc-iloveu
@AndyBaiduc-iloveu Сағат бұрын
Ok , I kinda get it ! Thanks!
quite a nice couple of problems
12:25
Michael Penn
Рет қаралды 7 М.
HELLUVA BOSS - SINSMAS // S2: Episode 12 -FINALE
29:05
Vivziepop
Рет қаралды 4,3 МЛН
Что-что Мурсдей говорит? 💭 #симбочка #симба #мурсдей
00:19
Math News: The Fish Bone Conjecture has been deboned!!
23:06
Dr. Trefor Bazett
Рет қаралды 172 М.
Researchers thought this was a bug (Borwein integrals)
17:26
3Blue1Brown
Рет қаралды 3,8 МЛН
a nice divisibility problem
12:38
Michael Penn
Рет қаралды 7 М.
How to Compute Square Roots in Your Head
14:49
Dave's Math Channel
Рет қаралды 11 М.
What is Integration? 3 Ways to Interpret Integrals
10:55
Math The World
Рет қаралды 407 М.
Integrate 1/(1+x^3)
24:56
Prime Newtons
Рет қаралды 63 М.
Feynman's Technique of Integration
10:02
blackpenredpen
Рет қаралды 592 М.
The 5 Sauces Every Chef Needs to Learn
19:55
Fallow
Рет қаралды 1,8 МЛН
Fundamental Theorem of Calculus Explained | Outlier.org
16:27
OutlierOrg
Рет қаралды 391 М.