A famous trig equation.

  Рет қаралды 24,909

Michael Penn

Michael Penn

Күн бұрын

Пікірлер: 98
@MizardXYT
@MizardXYT 4 жыл бұрын
tan(2𝜋/3)+4sin(𝜋/3) = √3 tan(4𝜋/7)+4sin(𝜋/7) = √7 tan(4𝜋/11)+4sin(𝜋/11) = √11
@goodplacetostop2973
@goodplacetostop2973 4 жыл бұрын
13:05 10+1 = 11 18:16
@muckchorris9745
@muckchorris9745 4 жыл бұрын
Waiting for (michael penn)^300 xD
@vedants.vispute77
@vedants.vispute77 4 жыл бұрын
Video 3 mins ago and this one 5 mins ago. Explain.
@goodplacetostop2973
@goodplacetostop2973 4 жыл бұрын
@@muckchorris9745 As a matter of fact, blackpenredpen suggested me a great idea for another video. I’m open to more suggestions 😀
@goodplacetostop2973
@goodplacetostop2973 4 жыл бұрын
@@vedants.vispute77 Video goes up at 8AM EST. So I just wait for that exact time and posts the comment. Really that simple. But I’ve noticed the bell notification goes up 2-3 minutes after the actual upload of the video.
@vedants.vispute77
@vedants.vispute77 4 жыл бұрын
@@goodplacetostop2973 yeah ur right
@skysong8140
@skysong8140 4 жыл бұрын
(A-B) can be solved by using the relation (A-B)^2 = (A+B)^2 - 4AB Would end up with two solutions but the negative one can be eliminated using the same logic as in the video.
@mathsandsciencechannel
@mathsandsciencechannel 4 жыл бұрын
Thank you sir. you have encouraged me to start my maths and science channel. lets learn more and sub to be notified. thanks
@monikaherath7505
@monikaherath7505 4 жыл бұрын
How do people come up with identities like this? Do they just stumble upon it while solving a problem or just by messing around? It's an extremely unintuitive identity with an astoundingly elegant proof using complex roots of unity. Honestly my mind is completely blown knowing that you could have precisely calculated this identity hundreds of years ago using just a pencil and paper. Question: are the trigonometric components in this identity transcendental while its sum is algebraic?
@kingkartabyo6206
@kingkartabyo6206 4 жыл бұрын
Regarding your last comment, no. Both terms are in fact algebraic. Say s=sin 2pi/11, then using formula for sin(11x) in terms of sin x, we get: 0=sin 2pi=a polynomial in s.
@monikaherath7505
@monikaherath7505 4 жыл бұрын
@@kingkartabyo6206 Nice, thank you.
@carlosgiovanardi8197
@carlosgiovanardi8197 4 жыл бұрын
If you are interested in these kind of expressions, see arxiv.org/pdf/0709.3755.pdf and math.stackexchange.com/questions/45144 Piece of cake!
@laszloliptak611
@laszloliptak611 4 жыл бұрын
At 9:57 you want to refer to the geometric series summation formula: 1+x+x^2+...+x^n=(1-x^(n+1))/(1-x) Substituting x = -z^8 and n=9 we get 1-z^8+z^16- ... -z^72 = (1 -(-z^72)(-z^8))/(1-(-z^8))=(1-z^80)/(1+z^8). Same formula is used at 14:10.
@dhwyll
@dhwyll 4 жыл бұрын
It took me a while to figure out the factorization at 2:00. e^(i 20/11 pi) = e^(i pi (22/11 - 2/11)) = e^(i pi 22/11 - i pi 2/11) = e^(i pi 22/11) * e^(-i pi 2/11) = e^(i 2 pi) * e^(-i 2 pi/11)
@victorclaytonbarnett2959
@victorclaytonbarnett2959 4 жыл бұрын
Thank you
@WestOfEarth
@WestOfEarth 4 жыл бұрын
Thanks! Stumped me.
@n8cantor
@n8cantor 4 жыл бұрын
Is there any deeper reason as to why the cross terms in AB add up to 2(A+B)? I don't see any pattern in the exponents and the cross terms in other groupings don't seem to add up to anything special. For instance, in the 2nd tool equation, the z terms also come in inverse pairs (i.e. z^7 and z^4 are in separate groups and z^7*z^4 = 1) but if you multiply them out, the cross terms are a mess.
@Cypekeh
@Cypekeh 4 жыл бұрын
your editing is subtly amazing
@안태영-g8w
@안태영-g8w 2 жыл бұрын
I tried for the answer by using trigonometric identities. First, define a constant "θ = π/11". Let A = tan(3π/11)+4sin(2π/11) = tan(3θ)+4sin(2θ). Multiply both sides by cos(3θ) ⇒ Acos(3θ) = sin(3θ)+4sin(2θ)cos(3θ) = sin(3θ)+2sin(5θ)-2sin(θ). Then square both sides ⇒ (Acos(3θ))^{2} = [sin(3θ)+2sin(5θ)-2sinθ]^{2} and expand right hand side ⇒ RHS = sin^{2}(3θ)+4sin^{2}(5θ)+4sin^{2}(θ) + 4sin(3θ)sin(5θ)-8sin(5θ)sin(θ)-4sin(θ)sin(3θ) Use two identities: "sin^{2}(α) = (1-cos(2α))/2" and "sin(α)sin(β) = (cos(α-β)-cos(α+β))/2". Then, RHS = (1-cos(6θ))/2+2(1-cos(10θ))+2(1-cos(2θ)) + 2(cos(2θ)-cos(8θ))+4(cos(6θ)-cos(4θ))+2(cos(4θ)-sin(2θ)) = 9/2 + (7/2)cos(6θ) -2(cos(2θ)+cos(4θ)+cos(8θ)+cos(10θ)) Besides, bring another identity: "Σ{0≤k≤n-1}cos(2πk/n)=0". Substitute "n=11" and "θ = π/11" ⇒ 1+cos(2θ)+cos(4θ)+cos(6θ)+…+cos(20θ)=0 And since "cos(α) = cos(2π-α) = cos(22θ-α)", it can be written as "1+2(cos(2θ)+cos(4θ)+cos(6θ)+cos(8θ)+cos(10θ))=0". Therefore, (Acos(3θ))^{2} = RHS = 11/2 + (11/2)cos(6θ) = 11cos^{2}(3θ), and A^{2}=11 Since A>0, the answer is A = tan(3π/11)+4sin(2π/11) = sqrt(11).
@mihaipuiu6231
@mihaipuiu6231 Жыл бұрын
Very, very interesting equation. Good for you Penn. But very hard equation.
@karangupta1825
@karangupta1825 4 жыл бұрын
It came on my KZbin home screen as a suggestion and couldn't resist 'not to click on it'
@ssvemuri
@ssvemuri 4 жыл бұрын
I am mesmerized by this result. Summing up two trig expressions can yield sqrt(11). VOW. just VOW. Using the same technique derive a closed form for (x-cube + x-squared - 2x-1) where x = 2cos(2pi/7) Hint: the answer is not an irrational number.
@markregev1651
@markregev1651 4 жыл бұрын
That's the same idea as in IMO 1963? show that cos(pi/7)-cos(2pi/7)+cos(3pi/7)=1/2 Oh and another suggestion for a geometry video: Fuss' theorem about bicentric quadrilaterals
@mathsandsciencechannel
@mathsandsciencechannel 4 жыл бұрын
Thank you sir. you have encouraged me to start my maths and science channel. lets learn more and sub to be notified. thanks
@elkincampos3804
@elkincampos3804 4 жыл бұрын
cos(π/7)=-cos(6*π/7) and cos(3*π/7)=-cos(4*π/7). Now, multiply the equation by 2. Take w=e^i(2*π/7). And use that 2*cos(x)=e^(i* x)+e^(-i*x). It follows the equality because w+w^2+w^3+w^4+w^5+w^6=-1.
@hsjkdsgd
@hsjkdsgd 4 жыл бұрын
I didn't know I had picked a tough problem to solve on my own.
@vbcool83
@vbcool83 4 жыл бұрын
Didn't quite get the step at 10:02 - how does the 1-(z^8)^10 directly factor out 1+z^8? 1-(z^8)^10 = (1-((z^8)^5)^2) = (1-(z^8)^5)(1+(z^8)^5) = (1-z^8)(1+z^8+z^16+z^24+z^32)(1+z^8)(1-z^8+z^16-z^24+z^32) That's how 1+z^8 gets factored out.
@MathMan271
@MathMan271 4 жыл бұрын
wow great work Michael
@nawusayipsunam1643
@nawusayipsunam1643 4 жыл бұрын
Yes. It is superb.
@manucitomx
@manucitomx 4 жыл бұрын
And I thought this was going to be a walk in the park. I’ve been had again.
@ThePhysicsMathsWizard
@ThePhysicsMathsWizard 4 жыл бұрын
wow, nice identity !!
@lovingphysics5865
@lovingphysics5865 4 жыл бұрын
kzbin.info/www/bejne/gnXJemt_pcyJn8k
@alaingoudemand9818
@alaingoudemand9818 4 жыл бұрын
@@lovingphysics5865 v
@georgeebberson6
@georgeebberson6 4 жыл бұрын
At 12:20, what happens to the 2 out front of the first "tool" expression? The i gets factored out, but rather than putting 2*z^10 inside the brackets (as well as 2*z) there's just z^10 and z respectively?
@athenaP24
@athenaP24 4 жыл бұрын
You have 2*z^10 from the first tool, and - z^10 from the second tool, so you get z^10.
@georgeebberson6
@georgeebberson6 4 жыл бұрын
@@athenaP24 ohhhhh I'm an idiot thanks 😂
@mathsandsciencechannel
@mathsandsciencechannel 4 жыл бұрын
Thank you sir. you have encouraged me to start my maths and science channel. lets learn more and sub to be notified. thanks
@sundeep0207
@sundeep0207 4 жыл бұрын
Great approach. Is there a method without using complex numbers?
@get2113
@get2113 4 жыл бұрын
Very likely, but that route would entail searching through many tables of trig identities, some of might even have been proved via Euler. See your point but shortcuts are often needed to make progress.
@sundeep0207
@sundeep0207 4 жыл бұрын
@@get2113 Yes, an approach without using the complex numbers might be too complex 😁
@dulcedeleche000
@dulcedeleche000 3 жыл бұрын
Yes its possible you can find the solution of this question in IIT JEE Amit M Agrrwalas book. And when I did this question in 2008 publication KC Sinha trigonometry and there was no solution in this book. And yes the solution was purely trigonometric no complex numbers concept used.
@AlephThree
@AlephThree 4 жыл бұрын
Brilliant!
@jaa2174
@jaa2174 4 жыл бұрын
I get lost at 10:00. I believe you, but I would love to see where that result is coming from.
@MathrillSohamJoshi
@MathrillSohamJoshi 4 жыл бұрын
I think he first split 1-z^80 as (1+z^40)(1-z^40) using the 'difference of squares' formula. Because(40=8(5)) we can factorise (1+z^40) such that one of its factors is the denominator, simplifying it to z^32-z^24+ z^16-z^8+1. Finally, multiplying the obtained expression by 1-z^40 gives us 1-z^8+z^16-z^24+z^32-z^40+z^48- z^56+z^64-z^72 Hope this helps :)
@jaa2174
@jaa2174 4 жыл бұрын
@@MathrillSohamJoshi Thanks!
@MathrillSohamJoshi
@MathrillSohamJoshi 4 жыл бұрын
@@jaa2174Welcome :)
@Артем-х9у9к
@Артем-х9у9к 4 жыл бұрын
Also tan(π/11)+4*sin(3π/11)=√11
@ernest3109
@ernest3109 4 жыл бұрын
15:25 whaaat? why is the rest of the product equal to 2(a+b)?
@skillerror951
@skillerror951 4 жыл бұрын
Фейспалм кирюш, все же очевидно
@ernest3109
@ernest3109 4 жыл бұрын
@@skillerror951 мне не очевидно объясни
@jounik
@jounik 4 жыл бұрын
It's just the pairwise sums of numbers 1-10 mod 11 where you pick one summand from A={10,8,7,6,2} and the other one from B={1,3,4,5,9}. Once you've set aside the 5 pairs that sum to 0, you get two each of the other values, i.e. two sets of A+B.
@ernest3109
@ernest3109 4 жыл бұрын
@@jounik Still unclear. I guess I have to write down all remaining 20 parts to see the pattern. Probably I'm stupid.
@jounik
@jounik 4 жыл бұрын
@@ernest3109 Not stupid and it's not exactly obvious, but it _is_ easy to verify which is all Michael said. I suppose there are some cyclic properties that would help see it directly but it's easier to just write them out. I know I did.
@Zxv975
@Zxv975 4 жыл бұрын
I'm confused, what happened to the 1+z^8 denominator around 10:30?
@zhaochengliu9970
@zhaochengliu9970 4 жыл бұрын
I think that's the geometric series summation, but in an inverse manner. The ratio of the series is z.
@Zxv975
@Zxv975 4 жыл бұрын
@@zhaochengliu9970 ohhhhhh I see it now! It's an alternating geometric sum, got it. Thanks so much for that. I was thinking about it completely wrong because Michael mentioned about generalised difference of squares and I just couldn't see how that related. Also, did you mean to say the ratio is z^8 (or rather, I guess -z^8).
@zhaochengliu9970
@zhaochengliu9970 4 жыл бұрын
@@Zxv975 Sure haha! I was struggling on that point too XD. It's kinda confusing. And yep, you are right, the ratio is actually -z^8.
@claudioproy9489
@claudioproy9489 4 жыл бұрын
Can you generalize this for any prime in denominator?
@BatmanPooping
@BatmanPooping 4 жыл бұрын
Where was it used that 11 is prime?
@synaestheziac
@synaestheziac 4 жыл бұрын
​@@BatmanPooping I think it has to do with the way in which certain exponents are inverses of each other mod 11 and the way in which the cross terms in the product of A and B reproduce the original exponents. I'm just learning about primitive roots mod p in Michael's number theory videos, so I'm not entirely sure what I'm talking about, but it seems like there are number-theoretic results hovering in the background herer.
@BatmanPooping
@BatmanPooping 4 жыл бұрын
@@synaestheziac No. It has nothing to do with being prime. For any natural n, e^(2 pi i (n-1)/n)= e^(-2 pi i/n).
@pattemsarvesh5002
@pattemsarvesh5002 4 жыл бұрын
Great video 🙌
@rbdgr8370
@rbdgr8370 4 жыл бұрын
What was the motivation behind using 11th root of unity for solving sin(2pi/11) and 22nd root of unity for solving tan(3pi/11)?Was it the step involved at 7:56 or there is a certain algorithm for such problems??
@synaestheziac
@synaestheziac 4 жыл бұрын
Seriously. This derivation had a whole bunch of steps I never would have thought of.
@rbdgr8370
@rbdgr8370 4 жыл бұрын
@@synaestheziac after 7:56 it was comparatively easier as I have solved many ques on those concepts but before that I never would've guessed taking 22nd root of unity for solving tan(3π/11)
@synaestheziac
@synaestheziac 4 жыл бұрын
@@rbdgr8370 I got befuddled as soon as he constructed z to the 88th power, and then rewrote it as z to the 8th to the 10th - can you help me see how one would decide to make those moves?
@guill3978
@guill3978 4 жыл бұрын
Is 1/ln(2) + 1/ln(3) a transcendental number?
@nerdiconium1365
@nerdiconium1365 4 жыл бұрын
From knowing e is transcendental, you can figure out each addend is at least irrational, but this feels like it might be in the same vein as “We don’t know if pi+e is rational, irrational, or transcendental” types of questions. Also, the reciprocals make it harder because it effectively switches the argument and the base of the logarithm.
@amberdeshbhratar9342
@amberdeshbhratar9342 4 жыл бұрын
How to prove 1/cos(π/7) + 2cos(π/7)/cos(2π/7) =4
@sundeep0207
@sundeep0207 4 жыл бұрын
Was able to transform this problem to the below one. Proving one is equivalent to proving the other. Show that Cos(pi/7)+Cos(3pi/7)+cos(5pi/7)=0.5 Got stuck here. Any thoughts on this?
@sundeep0207
@sundeep0207 4 жыл бұрын
Was able to arrive at the proof. Please find it below. Part 1 of the proof Show that the given problem is equivalent to proving Cos(π/7) + Cos(3π/7) + Cos(5π/7) = 0.5 Consider X = 1/Cos(π/7) + 2Cos(π/7)/Cos(2π/7) - 4. Our original problem is proving that X=0. Multiplying both sides by Cos(π/7)*Cos(2π/7), we get Cos(π/7)*Cos(2π/7)*X = Cos(2π/7) + 2*Cos(π/7)*Cos(π/7) - 4*Cos(π/7)*Cos(2π/7) For the purpose of brevity, I will replace the LHS of the equation with Y. We can see that X=0 if and only if Y=0 . Hence, the given problem is same as showing Y=0. Y = Cos(2π/7) + 2*Cos(π/7)*Cos(π/7) - 4*Cos(π/7)*Cos(2π/7) Y = Cos(2π/7) + 2*Cos(π/7)*Cos(π/7) - 2*(2*Cos(π/7)*Cos(2π/7)) Y = Cos(2π/7) + 2*Cos(π/7)*Cos(π/7) - 2*(Cos(3π/7)+Cos(π/7)) Y = Cos(2π/7) + Cos(2π/7) + 1 - 2*(Cos(3π/7)+Cos(π/7)) Y = 2*Cos(2π/7) + 1 - 2*(Cos(3π/7)+Cos(π/7)) Y = -2*Cos(5π/7) + 1 - 2*(Cos(3π/7)+Cos(π/7)) Therefore, Y = 1 - 2*(Cos(π/7) + Cos(3π/7) + Cos(5π/7)) From this we can observe that Showing X=0 is same as showing Cos(π/7) + Cos(3π/7) + Cos(5π/7) = 0.5 Part 2 of the proof Prove that Cos(π/7) + Cos(3π/7) + Cos(5π/7) = 0.5 Consider the equation Z^7 + 1 = 0 The roots of this equation are β, β^3, β^5, β^7, β^9, β^11 and β^13 , where β = e^(iπ)/7 We can see that the sum of the roots of this equation is 0. i.e., β + β^3 + β^5 + β^7 + β^9 + β^11 + β^13 = 0 Considering the real parts on both sides, we get Cos(π/7) + Cos(3π/7) + Cos(5π/7) + Cos(7π/7) + Cos(9π/7) + Cos(11π/7) + Cos(13π/7) = 0 Cos(π/7) + Cos(3π/7) + Cos(5π/7) + (-1) + Cos(9π/7) + Cos(11π/7) + Cos(13π/7) = 0 Cos(π/7) + Cos(3π/7) + Cos(5π/7) + Cos(9π/7) + Cos(11π/7) + Cos(13π/7) = 1 Cos(π/7) + Cos(3π/7) + Cos(5π/7) + Cos(5π/7) + Cos(3π/7) + Cos(π/7) = 1 2*(Cos(π/7) + Cos(3π/7) + Cos(5π/7)) = 1 Therefore, Cos(π/7) + Cos(3π/7) + Cos(5π/7) = 0.5 Please let me know if something is not clear.
@amberdeshbhratar9342
@amberdeshbhratar9342 4 жыл бұрын
thank you 😁
@megacarlosloki
@megacarlosloki 4 жыл бұрын
Try OBMU second fase problem 5 :)
@sofly666
@sofly666 4 жыл бұрын
esse daí é brabo, né não
@lawlietl1370
@lawlietl1370 4 жыл бұрын
De qual ano?
@lawlietl1370
@lawlietl1370 4 жыл бұрын
@@sofly666 nada melhor do que mais um BR por aqui
@shailendragupta7517
@shailendragupta7517 4 жыл бұрын
This can be done without using complex number
@l0new0lf000
@l0new0lf000 4 жыл бұрын
Nice hoodie
@yashagrahari
@yashagrahari 4 жыл бұрын
It would seem more magical if you don't see down to the floor.
@TrueBagPipeRock
@TrueBagPipeRock 4 жыл бұрын
k
@eusterich3035
@eusterich3035 4 жыл бұрын
Yeah kinda like memorise shit
@eusterich3035
@eusterich3035 4 жыл бұрын
All iit jee aspirant just rote learn it 😂😂😂
@mathsandsciencechannel
@mathsandsciencechannel 4 жыл бұрын
Thank you sir. you have encouraged me to start my maths and science channel. lets learn more and sub to be notified. thanks
@vedants.vispute77
@vedants.vispute77 4 жыл бұрын
All people here listen, Prove that the probability of getting a like on this video is zero. Disproove this statement.
@Thaplayer1209
@Thaplayer1209 4 жыл бұрын
There are 2 dislikes now what have you done
@goodplacetostop2973
@goodplacetostop2973 4 жыл бұрын
Asking people on the internet to not do something is the best way to provoke that thing 😛
@vedants.vispute77
@vedants.vispute77 4 жыл бұрын
@@drsonaligupta75 I saved myself.
a golden value of cosine.
9:42
Michael Penn
Рет қаралды 35 М.
A cool divisibility fact.
18:01
Michael Penn
Рет қаралды 23 М.
REAL or FAKE? #beatbox #tiktok
01:03
BeatboxJCOP
Рет қаралды 18 МЛН
Don’t Choose The Wrong Box 😱
00:41
Topper Guild
Рет қаралды 62 МЛН
Too hard for the IMO? Too easy?
24:20
Michael Penn
Рет қаралды 98 М.
Math for fun, sin(z)=2
19:32
blackpenredpen
Рет қаралды 1,8 МЛН
The Wallis product for pi, proved geometrically
26:38
3Blue1Brown
Рет қаралды 833 М.
A viewer suggested floor integral!
11:46
Michael Penn
Рет қаралды 34 М.
The Trig Hiding Inside the Factorials (And Harmonic Numbers)
19:06
Lines That Connect
Рет қаралды 168 М.
Math News: The Fish Bone Conjecture has been deboned!!
23:06
Dr. Trefor Bazett
Рет қаралды 201 М.
Why You Can't Bring Checkerboards to Math Exams
21:45
Wrath of Math
Рет қаралды 420 М.
What does it feel like to invent math?
15:08
3Blue1Brown
Рет қаралды 4,2 МЛН