Convolution in the time domain

  Рет қаралды 27,733

Mike X Cohen

Mike X Cohen

Күн бұрын

Пікірлер: 33
@romanvereb7144
@romanvereb7144 4 жыл бұрын
Mike X Cohen - the unsung hero of our age
@mikexcohen1
@mikexcohen1 4 жыл бұрын
Aww, now you make me blush ;)
@weilawei
@weilawei 4 жыл бұрын
Super clear explanation, very intuitive. Thank you.
@mikexcohen1
@mikexcohen1 4 жыл бұрын
You're welcome!
@IamGQ87
@IamGQ87 4 жыл бұрын
really very pedagogical. Thank you
@kaymengjialyu5086
@kaymengjialyu5086 3 жыл бұрын
You are such a good teacher :)
@mikexcohen1
@mikexcohen1 3 жыл бұрын
aww, thanks!
@jesusdanielolivaresfiguero4752
@jesusdanielolivaresfiguero4752 3 жыл бұрын
Is there a way to buy your Analyzing Neural Time Series Data book on credit for monthly payments?
@mikexcohen1
@mikexcohen1 3 жыл бұрын
Hi Jesus. Find my email address (it's on my CV) and send me an email about this.
@violincrafter
@violincrafter 4 жыл бұрын
Wings of convolution: a good band name
@mikexcohen1
@mikexcohen1 4 жыл бұрын
I'll be the back-up kazoo player.
@MrPabloguida
@MrPabloguida Жыл бұрын
Is it fair to say that the result signal, even after cutting out the wings, will still be "contaminated" by the zero padding for at least another half kernel length, which would be when it start having a pure and clean signal/kernel convolution? Does it make sense?
@mikexcohen1
@mikexcohen1 Жыл бұрын
It is certainly the case that edges are always difficult to interpret from any kind of filtering. When possible, it's best to have extra time series before and after the period of interest, so that you can ignore those edges.
@bokkieyeung504
@bokkieyeung504 3 жыл бұрын
I'm wondering why not aligning the center of the kernel with the edge of the signal (still need zero-padding, but less extra zeros) so that we can get the result with exact same length as the original signal, thus no need to cut off the "wings"?
@mikexcohen1
@mikexcohen1 3 жыл бұрын
If you are implementing convolution manually in the time domain using for-loops, then yes, that's convenient. But the formal procedure is done to match the implementation in the frequency domain, which is much faster.
@brixomatic
@brixomatic Жыл бұрын
Wouldn't the convolution it be a better representation of the signal, if you could wrap around the edges of the signal? I.e. you'd start the kernel's mid point at the start of the signal and take the left half of the kernel from the right side of the signal and if the kernel exceeds the right bounds, take the data from the start of the signal? This way your convolution would have the same length as the signal, but operate only on the signal's data and not sneak in zeroes that have no meaning and pollute the results.
@mikexcohen1
@mikexcohen1 Жыл бұрын
Yes, that's called "circular convolution"; what I explain here is "linear convolution." Both methods produce edge effects that should not be interpreted.
@鐵匠史密斯
@鐵匠史密斯 Жыл бұрын
​@@mikexcohen1 teacher. I want to make sure if if my thoughts are correct. The edge effect will occur when we use 'Convolution Theory' to obtain the result of the convolution between two signals. This is because 'Convolution Theory' uses FFT. If the max frequency of the two signals exceeds the Nyquist Frequency, aliasing will occur. This is why it's called the "edge effect", right? Sorry I'm not native English speaker, if something's confusing, please correct me.
@ormedanim
@ormedanim 3 жыл бұрын
you lost me at God's perspective, now I'm flipping (out) instead of the kernel :D But I am very thankful for all the videos and the ANTS book
@mikexcohen1
@mikexcohen1 3 жыл бұрын
Nice.
@jaimelima2420
@jaimelima2420 3 жыл бұрын
Richard Hamming's Digital Filter explains this god's perspective in a different way, worth checking imho.
@tranez2205
@tranez2205 4 жыл бұрын
Awesome video! Thank you so much!
@jaimelima2420
@jaimelima2420 3 жыл бұрын
This is good stuff. Good Job!
@hurstcycles
@hurstcycles 3 жыл бұрын
If the kernel is a morlet wavelet (formed by combining a constant sine wave and gaussian) and symetrical around the mid point, flipping the kernel is not necessary, is that accurate? Thanks for the great video
@mikexcohen1
@mikexcohen1 3 жыл бұрын
Kindof, but be careful with the descriptions: The kernel always needs to be flipped, but if the kernel is symmetric, then flipping has no effect. (Also, sine is an odd function and thus is asymmetric; cosine is symmetric about zero.)
@RenanAlvess
@RenanAlvess 4 жыл бұрын
congratulations for explanation, was very enlightening for me
@mikexcohen1
@mikexcohen1 4 жыл бұрын
Nice to hear. I made this video just for you, Renan :D
@prempant6428
@prempant6428 3 жыл бұрын
How do you decide what sort of kernel to use?
@mikexcohen1
@mikexcohen1 3 жыл бұрын
That's application-specific. But the procedure of convolution doesn't depend on the shape or length of the kernel.
@helenzhou3530
@helenzhou3530 3 жыл бұрын
This video is super helpful, thank you so much!
@williammartin4416
@williammartin4416 Жыл бұрын
Excellent explanations
@mikexcohen1
@mikexcohen1 Жыл бұрын
Glad you liked it!
@sachindrad.a836
@sachindrad.a836 2 жыл бұрын
Very nice explanation
Convolution as spectral multiplication
19:30
Mike X Cohen
Рет қаралды 17 М.
Complex Morlet wavelet convolution
12:44
Mike X Cohen
Рет қаралды 19 М.
The IMPOSSIBLE Puzzle..
00:55
Stokes Twins
Рет қаралды 199 МЛН
Sigma Kid Mistake #funny #sigma
00:17
CRAZY GREAPA
Рет қаралды 15 МЛН
Lamborghini vs Smoke 😱
00:38
Topper Guild
Рет қаралды 54 МЛН
How to Understand Convolution ("This is an incredible explanation")
5:23
Iain Explains Signals, Systems, and Digital Comms
Рет қаралды 54 М.
Time and frequency domains
9:43
Mike X Cohen
Рет қаралды 102 М.
EEG Eye Blink Artifact Removal With Independent Component Analysis (ICA)
9:46
Jared Beckwith, R. EEG T.
Рет қаралды 6 М.
Morlet wavelets in time and in frequency
17:48
Mike X Cohen
Рет қаралды 61 М.
How did Ghostbusters know your bank account balance?!
9:08
Retro Recipes 🕹️ vintage tech + tv
Рет қаралды 738 М.
What is convolution? This is the easiest way to understand
5:36
Discretised
Рет қаралды 137 М.
The filter-Hilbert method
23:07
Mike X Cohen
Рет қаралды 23 М.